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SYLLABUS 
MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 
II Year B. Tech. IT- I Sem L/T/P/C 

 3/-/-/3 

(R22A0503) DATA STRUCTURES 

COURSE OBJECTIVES: 

This course will enable students to 
1. Learn Object Oriented Programming concepts in Python. 

2. Illustrate how searching and sorting is performed in Python. 

3. Understanding how linear data structures works. 

4. Implement Dictionaries and graphs in Python. 

5. Understanding how Non linear data structures works. 

UNIT – I 

Oops Concepts - class, object, constructors, types of variables, types of methods. Inheritance: single, 

multiple, multi-level, hierarchical, hybrid, Polymorphism: with functions and objects, with class 

methods, with inheritance, Abstraction: abstract classes. 

 

UNIT – II 

Searching- Linear Search and Binary Search. 

Sorting - Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort. 

 

UNIT – III 

Data Structures –Definition, Linear Data Structures, Non-Linear Data Structures, 

Stacks - Overview of Stack, Implementation of Stack (List), Applications of Stack 

Queues: Overview of Queue, Implementation of Queue (List), Applications of Queues, Priority Queues 

Linked Lists – Implementation of Singly Linked Lists, Doubly Linked Lists, Circular Linked Lists. 

Implementation of Stack and Queue using Linked list. 

 

UNIT – IV 

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and 

searching. 

Graphs - Introduction, Directed vs Undirected Graphs, Weighted vs Unweighted Graphs, 

Representations, Breadth First Search, Depth First Search. 

 

UNIT -V 

Trees - Overview of Trees, Tree Terminology, Binary Trees: Introduction, Implementation, 

Applications. Tree Traversals, Binary Search Trees: Introduction, Implementation, AVL Trees: 

Introduction, Rotations, Implementation B-Trees and B+ Trees. 

 

TEXTBOOKS: 

1. Data structures and algorithms in python by Michael T. Goodrich 
2. Data Structures and Algorithmic Thinking with Python by Narasimha Karumanchi 

 

REFERENCE BOOKS: 

1. Hands-On Data Structures and Algorithms with Python: Write complex and powerful code using 

the latest features of Python 3.7, 2nd Edition by Dr. Basant Agarwal, Benjamin Baka. 

2. Data Structures and Algorithms with Python by Kent D. Lee and Steve Hubbard. 
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3. Problem Solving with Algorithms and Data Structures Using Python by Bradley N Miller and 

David L. Ranum. 

4. Core Python Programming -Second Edition ,R. Nageswara Rao, Dreamtech Press 

 

COURSE OUTCOMES: 

The students should be able to: 
1. Interpret the concepts of Object-Oriented Programming as used in Python. 

2. Know the usage of various searching and sorting techniques 

3. Implement Linear data structures like stack ,Queue and Linked Lists 

4. Illustrate the concepts of Dictionaries and graphs 

5. Implement various types of trees. 
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Class 

A class is a blueprint for the object. 

 
We can think of class as a sketch of a parrot with labels. It contains all the details about the name, colors, 

size etc. Based on these descriptions, we can study about the parrot. Here, a parrot is an object. 

The example for class of parrot can be : 

class Parrot: 

pass 

Here, we use the class keyword to define an empty class Parrot. From class, we construct instances. An 

instance is a specific object created from a particular class. 

Object 

An object (instance) is an instantiation of a class. When class is defined, only the description for the object 

is defined. Therefore, no memory or storage is allocated. 

The example for object of parrot class can be: 

obj = Parrot() 

Here, obj is an object of class Parrot. 

Suppose we have details of parrots. Now, we are going to show how to build the class and objects of 

parrots. 

UNIT – I 
Oops Concepts- class, object, constructors, types of variables, types of methods. Inheritance: single, 

multiple, multi-level, hierarchical, hybrid, Polymorphism: with functions and objects, with class methods, 

with inheritance,Abstraction: abstract classes. 

 
 

OOPs in Python 

OOPs in Python is a programming approach that focuses on using objects and classes as same as other 

general programming languages. The objects can be any real-world entities. Python allows developers to 

develop applications using the OOPs approach with the major focus on code reusability. 
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Output 

Blu is a bird 

Woo is also a bird 

Blu is 10 years old 

Woo is 15 years old 

In the above program, we created a class with the name Parrot. Then, we define attributes. The attributes are 

a characteristic of an object. 

These attributes are defined inside the init method of the class. It is the initializer method that is first 

run as soon as the object is created. 

Then, we create instances of the class. Here, blu and are references (value) to our new objects. 

We can access the class attribute using class   .species. Class attributes are the same for all instances of a 

class. Similarly, we access the instance attributes using 

are different for every instance of a class. 

and blu.age. However, instance attributes blu.name 

woo Parrot 

Example: 

class Parrot: 
 

# class attribute 
species = "bird" 

 

# instance attribute 

def init (self, name, age): 

self.name = name 

self.age = age 

 

# instantiate the Parrot class 

blu = Parrot("Blu", 10) 

woo = Parrot("Woo", 15) 

 

# access the class attributes 

print("Blu is a {}".format(blu. class .species)) 

print("Woo is also a {}".format(woo. class .species)) 

 

# access the instance attributes 

print("{} is {} years old".format( blu.name, blu.age)) 
print("{} is {} years old".format( woo.name, woo.age)) 
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classHuman: 
def init (self): 

self.legs = 2 

self.arms = 2 
 

bob = Human() 

print(bob.legs) 

constructor 

 

The constructor is a method that is called when an object is created. This method is defined in the class and 
can be used to initialize basic variables. 

 

If you create four objects, the class constructor is called four times. Every class has a constructor, but its not 

required to explicitly define it. 

 
Example: 

 
Each time an object is created a method is called. That methods is named the constructor. 

 

The constructor is created with the function init. As parameter we write the self keyword, which refers to 

itself (the object). The process visually is: 

 

Inside the constructor we initialize two variables: legs and arms. Sometimes variables are named properties 

in the context of object oriented programming. We create one object (bob) and just by creating it, its 

variables are initialized. 

 

The newly created object now has the variables set, without you having to define them manually. You could 

create tens or hundreds of objects without having to set the values each time. 

 
python init   

 

The function init(self) builds your object. Its not just variables you can set here, you can call class methods 
too. Everything you need to initialize the object(s). 

 

Lets say you have a class Plane, which upon creation should start flying. There are many steps involved in 

taking off: accelerating, changing flaps, closing the wheels and so on. 
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classPlane: 
def init (self): 

self.wings = 2 

 

# fly 

self.drive() 

self.flaps() 

self.wheels() 

 

defdrive(self): 

print('Accelerating') 

 

defflaps(self): 

print('Changing flaps') 

 

defwheels(self): 

print('Closing wheels') 

 
ba = Plane() 

classBug: 
def init (self): 

self.wings = 4 

 

classHuman: 

def init (self): 

self.legs = 2 

self.arms = 2 

 
bob = Human() 
tom = Bug() 

 

print(tom.wings) 

print(bob.arms) 

The default actions can be defined in methods. These methods can be called in the constructor. 

 

To summarize: A constructor is called if you create an object. In the constructor you can set variables and 

call methods. 

 
Default value 

 
The constructor of a class is unique: initiating objects from different classes will call different constructors. 

Default values of newly created objects can be set in the constructor. 

The example belwo shows two classes with constructors. Then two objects are created but different 

constructors are called. 
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# Declare a variable and initialize it 

f = 101 

print f 

# Global vs. local variables in functions 

def someFunction(): 

# global f 

f = 'I am learning Python' 

print f 

But creating multiple objects from one class, will call the same constructor. 

 

 
Python Variable Types: Local & Global 

 

There are two types of variables in Python, Global variable and Local variable. When you want to use the 

same variable for rest of your program or module you declare it as a global variable, while if you want to 

use the variable in a specific function or method, you use a local variable while Python variable declaration. 

 

Let's understand this Python variable types with the difference between local and global variables in the 
below program. 

 

1. Let us define variable in Python where the variable "f" is global in scope and is assigned value 101 

which is printed in output 

2. Variable f is again declared in function and assumes local scope. It is assigned value "I am learning 

Python." which is printed out as an output. This Python declare variable is different from the global 

variable "f" defined earlier 
3. Once the function call is over, the local variable f is destroyed. At line 12, when we again, print the 

value of "f" is it displays the value of global variable f=101 
 

Python 2 Example 
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# Declare a variable and initialize it 
f = 101 

print(f) 

# Global vs. local variables in functions 

def someFunction(): 

# global f 
f = 'I am learning Python' 
print(f) 

someFunction() 

print(f) 

f = 101; 

print f 
# Global vs.local variables in functions 

def someFunction(): 

 
 

Python 3 Example 

 

While Python variable declaration using the keyword global, you can reference the global variable inside a 

function. 

 

1. Variable "f" is global in scope and is assigned value 101 which is printed in output 

2. Variable f is declared using the keyword global. This is NOT a local variable, but the same global 

variable declared earlier. Hence when we print its value, the output is 101 

3. We changed the value of "f" inside the function. Once the function call is over, the changed value of 

the variable "f" persists. At line 12, when we again, print the value of "f" is it displays the value 

"changing global variable" 
 

Python 2 Example 
 

someFunction() 

print f 



12  

f = 101; 

print(f) 
# Global vs.local variables in functions 

def someFunction(): 

global f 

print(f) 

f = "changing global variable" 
someFunction() 

print(f) 

 
 

Python 3 Example 

 

 
 

Types of methods: 

Generally, there are three types of methods in Python: 

 

1. Instance Methods. 

2. Class Methods 

3. Static Methods 

 

 
 

Before moving on with the topic, we have to know some key concepts. 

 
Class Variable: A class variable is nothing but a variable that is defined outside the constructor. A class 
variable is also called as a static variable. 

 

Accessor(Getters): If you want to fetch the value from an instance variable we call them accessors. 

 

Mutator(Setters): If you want to modify the value we call them mutators. 

 
1. Instance Method 

 

This is a very basic and easy method that we use regularly when we create classes in python. If we want to 

print an instance variable or instance method we must create an object of that required class. 

 
If we are using self as a function parameter or in front of a variable, that is nothing but the calling instance 
itself. 

 

As we are working with instance variables we use self keyword. 

 

Note: Instance variables are used with instance methods. 

global f 

print f 

f = "changing global variable" 

someFunction() 

print f 
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# Instance Method Example in Python 

classStudent: 

 

def init (self, a, b): 

self.a = a 

self.b = b 

 

defavg(self): 

return(self.a + self.b)/2 

 

s1 = Student(10,20) 

print( s1.avg()) 

classmethod(function) 

Look at the code below 
 

Copy 
Output: 

 

 
 

In the above program, a and b are instance variables and these get initialized when we create an object for 
the Student class. If we want to call avg() function which is an instance method, we must create an object 
for the class. 

 
If we clearly look at the program, the self keyword is used so that we can easily say that those are instance 
variables and methods. 

 

 

 
2. Class Method 

 

classsmethod() function returns a class method as output for the given function. 

Here is the syntax for it: 

The classmethod() method takes only a function as an input parameter and converts that into a class method. 

15.0 
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There are two ways to create class methods in python: 

 

1. Using classmethod(function) 

2. Using @classmethod annotation 

 

A class method can be called either using the class (such as C.f()) or using an instance (such as C().f()). The 

instance is ignored except for its class. If a class method is called from a derived class, the derived class 

object is passed as the implied first argument. 

 

As we are working with ClassMethod we use the cls keyword. Class variables are used with class methods. 

Look at the code below. 

 
Copy 

Output: 
 

 

In the above example, name is a class variable. If we want to create a class method we must 
use @classmethod decorator and cls as a parameter for that function. 

# Class Method Implementation in python 

classStudent: 

name ='Student' 

def init (self, a, b): 

self.a = a 

self.b = b 

 

 

@classmethod 

definfo(cls): 

return cls.name 

 
 

print(Student.info()) 

Student 
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# Static Method Implementation in python 

classStudent: 

name ='Student' 

def init (self, a, b): 

self.a = a 

self.b = b 

 

 

@staticmethod 

definfo(): 

return"This is a student class" 

 

 

print(Student.info()) 

3. Static Method 
 

A static method can be called without an object for that class, using the class name directly. If you want to 

do something extra with a class we use static methods. 

 

For example, If you want to print factorial of a number then we don't need to use class variables or instance 

variables to print the factorial of a number. We just simply pass a number to the static method that we have 

created and it returns the factorial. 

 

Look at the below code 
 

Copy 
Output 

 

 This a student class  
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The inheritance is the process of acquiring the properties of one class to another class. 

In the inheritance, the child class acquires the features from its parent class. But the parent class never 

acquires the features from its child class. 

Types of inheritances: 
The inheritance is a very useful and powerful concept of object-oriented programming. Using the 

inheritance concept, we can use the existing features of one class in another class. 

In inheritance, we use the terms like parent class, child class, base class, derived class, superclass, and 

subclass. 

The Parent class is the class which provides features to another class. The parent class is also known 

as Base class or Superclass. 

The Child class is the class which receives features from another class. The child class is also known as 

the Derived Class or Subclass. 
 

 

 
There are five types of inheritances, and they are as follows. 

 
 Simple Inheritance (or) Single Inheritance 

 Multiple Inheritance 

 Multi-Level Inheritance 

 Hierarchical Inheritance 

 Hybrid Inheritance 

 

The following picture illustrates how various inheritances are implemented. 
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Creating a Child Class 

In Python, we use the following general structure to create a child class from a parent class. 

 Syntax  

 
classChildClassName(ParentClassName): 

ChildClass implementation 

. 

. 

 

 

 
Let's look at individual inheritance type with an example. 

 

Simple Inheritance (or) Single Inheritance 

In this type of inheritance, one child class derives from one parent class. Look at the following example 

code. 

 Example  

 
classParentClass: 

 

deffeature_1(self): 

print('feature_1 from ParentClass is running...') 

 

deffeature_2(self): 

print('feature_2 from ParentClass is running...') 

 

classChildClass(ParentClass): 

deffeature_3(self): 

print('feature_3 from ChildClass is running...') 

 

obj = ChildClass() 

obj.feature_1() 

obj.feature_2() 
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obj.feature_3() 

 

 

 
When we run the above example code, it produces the following output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Multiple Inheritance 

In this type of inheritance, one child class derives from two or more parent classes. Look at the following 

example code. 

 Example  

 
classParentClass_1: 

 

deffeature_1(self): 

print('feature_1 from ParentClass_1 is running...') 

classParentClass_2: 

deffeature_2(self): 

print('feature_2 from ParentClass_2 is running...') 
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classChildClass(ParentClass_1, ParentClass_2): 

 

deffeature_3(self): 

print('feature_3 from ChildClass is running...') 

 

obj = ChildClass() 

obj.feature_1() 

obj.feature_2() 

obj.feature_3() 

 

 

When we run the above example code, it produces the following output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multi-Level Inheritance 

In this type of inheritance, the child class derives from a class which already derived from another class. 

Look at the following example code. 

 Example  

 
classParentClass: 
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deffeature_1(self): 

print('feature_1 from ParentClass is running...') 

classChildClass_1(ParentClass): 

deffeature_2(self): 

print('feature_2 from ChildClass_1 is running...') 

 

 

 
classChildClass_2(ChildClass_1): 

 

deffeature_3(self): 

print('feature_3 from ChildClass_2 is running...') 

 

obj = ChildClass_2() 

obj.feature_1() 

obj.feature_2() 

obj.feature_3() 

 

 

When we run the above example code, it produces the following output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Hierarchical Inheritance 
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In this type of inheritance, two or more child classes derive from one parent class. Look at the following 

example code. 

 Example  

 
classParentClass_1: 

 

deffeature_1(self): 

print('feature_1 from ParentClass_1 is running...') 

classParentClass_2: 

deffeature_2(self): 

print('feature_2 from ParentClass_2 is running...') 

 

classChildClass(ParentClass_1, ParentClass_2): 

deffeature_3(self): 

print('feature_3 from ChildClass is running...') 

 

obj = ChildClass() 

obj.feature_1() 

obj.feature_2() 

obj.feature_3() 

 

 

When we run the above example code, it produces the following output. 
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len("hello")# returns 5 as result 

len([1,2,3,4,45,345,23,42])# returns 8 as result 

 
 

 

 

Hybrid Inheritance 

The hybrid inheritance is the combination of more than one type of inheritance. We may use any 

combination as a single with multiple inheritances, multi-level with multiple inheritances, etc., 

 

Polymorphism: 

 
Polymorphism is a concept of object oriented programming, which means multiple forms or more than one 

form. Polymorphism enables using a single interface with input of different datatypes, different class or may 

be for different number of inputs. 

 
In python as everything is an object hence by default a function can take anything as an argument but the 
execution of the function might fail as every function has some logic that it follows. 

 

For example, 

 

In this case the function len is polymorphic as it is taking string as input in the first case and is taking list as 
input in the second case. 
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classSquare: 

side =5 

defcalculate_area_sq(self): 

return self.side * self.side 

 
 

classTriangle: 

base =5 

height =4 

defcalculate_area_tri(self): 

return0.5* self.base * self.height 

In python, polymorphism is a way of making a function accept objects of different classes if they behave 
similarly. 

 
Method overriding is a type of polymorphism in which a child class which is extending the parent class 
can provide different definition to any function defined in the parent class as per its own requirements. 

 

 

 

Method Overloading 

 
Method overriding or function overloading is a type of polymorphism in which we can define a number of 
methods with the same name but with a different number of parameters as well as parameters can be of 

different types. These methods can perform a similar or different function. 

 

Python doesn't support method overloading on the basis of different number of parameters in functions. 
 

 

 

Defining Polymorphic Classes 

 
Imagine a situation in which we have a different class for shapes like Square, Triangle etc which serves as a 

resource to calculate the area of that shape. Each shape has a different number of dimensions which are used 

to calculate the area of the respective shape. 

 
Now one approach is to define different functions with different names to calculate the area of the given 
shapes. The program depicting this approach is shown below: 
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classSquare: 

side =5 

defcalculate_area(self): 

return self.side * self.side 

 

 
classTriangle: 

base =5 

height =4 

defcalculate_area(self): 

return0.5* self.base * self.height 

 

 
sq = Square() 

 
The problem with this approach is that the developer has to remember the name of each function separately. 
In a much larger program, it is very difficult to memorize the name of the functions for every small 
operation. Here comes the role of method overloading. 

 

Now let's   change   the   name   of   functions   to   calculate   the   area   and   give   them   both   same 

name calculate_area() while keeping the function separately in both the classes with different definitions. In 

this case the type of object will help in resolving the call to the function. The program below shows the 

implementation of this type of polymorphism with class methods: 

 

 
Area of square: 25 

Area of triangle: 10.0 

 
 

sq = Square() 

tri = Triangle() 

print("Area of square: ", sq.calculate_area_sq()) 

print("Area of triangle: ", tri.calculate_area_tri()) 
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sq = Square() 

tri = Triangle() 

 

 
for(obj in(sq, tri)): 

obj.calculate_area() 

find_area_of_shape(obj): 

obj.calculate_area() 

 
As you can see in the implementation of both the classes i.e. Square as well as Triangle has the function 

with same name calculate_area(), but due to different objects its call get resolved correctly, that is when the 

function is called using the object sq then the function of class Square is called and when it is called using 

the object tri then the function of class Triangle is called. 

 
Polymorphism with Class Methods 

 
What we saw in the example above is again obvious behaviour. Let's use a loop which iterates over a tuple 

of objects of various shapes and call the area function to calculate area for each shape object. 

 

Now this is a better example of polymorphism because now we are treating objects of different classes as an 
object on which same function gets called. 

Here python doesn't care about the type of object which is calling the function hence making the class 

method polymorphic in nature. 

 
Polymorphism with Functions 

 
Just like we used a loop in the above example, we can also create a function which takes an object of some 
shape class as input and then calls the function to calculate area for it. For example, 

 

 
Area of square: 25 

Area of triangle: 10.0 

tri = Triangle() 

 
print("Area of square: ", sq.calculate_area()) 

print("Area of triangle: ", tri.calculate_area()) 
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In the example above we have used the same function find_area_of_shape to calculate area of two different 
shape classes. The same function takes different class objects as arguments and executes perfectly to return 
the result. This is polymorphism. 

 
Polymorphism with Inheritance 

Polymorphism in python defines methods in the child class that have the same name as the methods in the 

parent class. In inheritance, the child class inherits the methods from the parent class. Also, it is possible to 

modify a method in a child class that it has inherited from the parent class. 

 

This is mostly used in cases where the method inherited from the parent class doesn‟t fit the child class. This 

process of re-implementing a method in the child class is known as Method Overriding. Here is an example 

that shows polymorphism with inheritance: 

 

sq = Square() 

tri = Triangle() 

 
 

# calling the method with different objects 

find_area_of_shape(sq) 

find_area_of_shape(tri) 
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from abc import ABC 

// abc is a library from where a class ABC is being imported. However, a separate class can also be created. 

The importing from the library has nothing to do with abstraction. 

 
Class type_shape(ABC): 

from abc import ABC 

class type_shape(ABC): 

// abstract method area 
def area(self): 

pass 

Output: 

 

There are different types of birds 

Most of the birds can fly but some cannot 
There are different types of bird 

Parrots can fly 

There are many types of birds 

Penguins do not fly 

These are different ways to define polymorphism in Python. With this, we have come to the end of our 

article. I hope you understood what is polymorphism and how it is used in Python. 

 

Abstraction 

Abstraction is one of the most important features of object-oriented programming. It is used to hide the 
background details or any unnecessary implementation. 

 

Pre-defined functions are similar to data abstraction. 
 

For example, when you use a washing machine for laundry purposes. What you do is you put your laundry 

and detergent inside the machine and wait for the machine to perform its task. How does it perform it? What 

mechanism does it use? A user is not required to know the engineering behind its work. This process is 

typically known as data abstraction, when all the unnecessary information is kept hidden from the users. 
 

Code 

 

In Python, we can achieve abstraction by incorporating abstract classes and methods. 
 

Any class that contains abstract method(s) is called an abstract class. Abstract methods do not include any 
implementations – they are always defined and implemented as part of the methods of the sub-classes 

inherited from the abstract class. Look at the sample syntax below for an abstract class: 
 

The class type_shape is inherited from the ABC class. Let‟s define an abstract method area inside the 

class type_shape: 
 

The implementation of an abstract class is done in the sub-classes, which will inherit the class type_shape. 

We have defined four classes that inherit the abstract class type_shape in the code below 
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Example: 

from abc import ABC 

class type_shape(ABC): 

def area(self): 
#abstract method 

pass 
 

class Rectangle(type_shape): 

length = 6 

breadth = 4 

def area(self): 

return self.length * self.breadth 

 

class Circle(type_shape): 

radius = 7 

def area(self): 

return 3.14 * self.radius * self.radius 

 

class Square(type_shape): 

length = 4 

def area(self): 

return self.length*self.length 
 

class triangle: 

length = 5 

width = 4 
def area(self): 

return 0.5 * self.length * self.width 

 
 

r = Rectangle() # object created for the class 'Rectangle' 

c = Circle() # object created for the class 'Circle' 

s = Square() # object created for the class 'Square' 
t = triangle() # object created for the class 'triangle' 

print("Area of a rectangle:", r.area()) # call to 'area' method defined inside the class. 

print("Area of a circle:", c.area()) # call to 'area' method defined inside the class. 

print("Area of a square:", s.area()) # call to 'area' method defined inside the class. 

print("Area of a triangle:", t.area()) # call to 'area' method defined inside the class. 

 
Output 

1.14s 

Area of a rectangle: 24 

Area of a circle: 153.86 

Area of a square: 16 

Area of a triangle: 10.0 



29  

UNIT – II 

Searching- Linear Search and Binary Search. 

Sorting - Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort. 

 
Searching - Linear Search and Binary Search. 

There are two types of searching - 

o Linear Search 

o Binary Search 
 

Both techniques are widely used to search an element in the given list. 

 
Linear Search 

 
What is a Linear Search? 

 
Linear search is a method of finding elements within a list. It is also called a sequential search. It is the 
simplest searching algorithm because it searches the desired element in a sequential manner. 

 

It compares each and every element with the value that we are searching for. If both are matched, the 

element is found, and the algorithm returns the key's index position. 

 
Concept of Linear Search 

 

Let's understand the following steps to find the element key = 7 in the given list. 

 

Step - 1: Start the search from the first element and Check key = 7 with each element of list x. 
 

 

 

Step - 2: If element is found, return the index position of the key. 
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Step - 3: If element is not found, return element is not present. 
 
 

 

Linear Search Algorithm 

 
There is list of n elements and key value to be searched. 

Below is the linear search algorithm. 

1. LinearSearch(list, key) 

2. for each item in the list 

3. if item == value 

4. return its index position 

5. return -1 

 
Python Program 

 

Let's understand the following Python implementation of the linear search algorithm. 

 
Program 

 
1. def linear_Search(list1, n, key): 

2. 

3. # Searching list1 sequentially 

4. for i in range(0, n): 

5. if (list1[i] == key): 

6. return i 

7. return -1 

8. 

9. 

10. list1 = [1 ,3, 5, 4, 7, 9] 

11. key = 7 

12. 

13. n = len(list1) 

14. res = linear_Search(list1, n, key) 
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15. if(res == -1): 

16. print("Element not found") 

17. else: 

18. print("Element found at index: ", res) 

 
Output: 

 

 Element found at index: 4  

 
Explanation: 

 

In the above code, we have created a function linear_Search(), which takes three arguments - list1, length 

of the list, and number to search. We defined for loop and iterate each element and compare to the key 

value. If element is found, return the index else return -1 which means element is not present in the list. 

 
Linear Search Complexity 

 

Time complexity of linear search algorithm - 

 
o Base Case - O(1) 

o Average Case - O(n) 

o Worst Case -O(n) 
 

Linear search algorithm is suitable for smaller list (<100) because it check every element to get the desired 

number. Suppose there are 10,000 element list and desired element is available at the last position, this will 

consume much time by comparing with each element of the list. 

 

To get the fast result, we can use the binary search algorithm. 

 

 
Binary Search: 

 

A binary search is an algorithm to find a particular element in the list. Suppose we have a list of thousand 

elements, and we need to get an index position of a particular element. We can find the element's index 

position very fast using the binary search algorithm. 

 

There are many searching algorithms but the binary search is most popular among them. 

 

The elements in the list must be sorted to apply the binary search algorithm. If elements are not sorted then 

sort them first. 

 

Let's understand the concept of binary search. 
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Concept of Binary Search 
 

The divide and conquer approach technique is followed by the recursive method. In this method, a function 

is called itself again and again until it found an element in the list. 

 
A set of statements is repeated multiple times to find an element's index position in the iterative method. 
The while loop is used for accomplish this task. 

 
Binary search is more effective than the linear search because we don't need to search each list index. The 
list must be sorted to achieve the binary search algorithm. 

 

Let's have a step by step implementation of binary search. 

 

We have a sorted list of elements, and we are looking for the index position of 45. 

 
[12, 24, 32, 39, 45, 50, 54] 

 

So, we are setting two pointers in our list. One pointer is used to denote the smaller value called low and the 
second pointer is used to denote the highest value called high. 

 

Next, we calculate the value of the middle element in the array. 

 
1. mid = (low+high)/2 

2. Here, the low is 0 and the high is 7. 

3. mid = (0+7)/2 

4. mid = 3 (Integer) 

 
Now, we will compare the searched element to the mid index value. In this case, 32 is not equal to 45. So 
we need to do further comparison to find the element. 

 

If the number we are searching equal to the mid. Then return mid otherwise move to the further comparison. 

 

The number to be search is greater than the middle number, we compare the n with the middle element of 

the elements on the right side of mid and set low to low = mid + 1. 

 
Otherwise, compare the n with the middle element of the elements on the left side of mid and 
set high to high = mid - 1. 
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Repeat until the number that we are searching for is found. 

 
Implement a Binary Search in Python 

 
First, we implement a binary search with the iterative method. We will repeat a set of statements and iterate 
every item of the list. We will find the middle value until the search is complete. 

Let's understand the following program of the iterative method. 

Python Implementation 

1. # Iterative Binary Search Function method Python Implementation 

2. # It returns index of n in given list1 if present, 

3. # else returns -1 

4. def binary_search(list1, n): 

5. low = 0 

6. high = len(list1) - 1 

7. mid = 0 
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8. 

9. while low <= high: 

10. # for get integer result 

11. mid = (high + low) // 2 

12. 

13. # Check if n is present at mid 

14. if list1[mid] < n: 

15. low = mid + 1 

16. 

17. # If n is greater, compare to the right of mid 

18. elif list1[mid] > n: 

19. high = mid - 1 

20. 

21. # If n is smaller, compared to the left of mid 

22. else: 

23. return mid 

24. 

25. # element was not present in the list, return -1 

26. return -1 

27. 

28. 

29. # Initial list1 

30. list1 = [12, 24, 32, 39, 45, 50, 54] 

31. n = 45 

32. 

33. # Function call 

34. result = binary_search(list1, n) 

35. 

36. if result != -1: 

37. print("Element is present at index", str(result)) 

38. else: 

39. print("Element is not present in list1") 
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Output: 
 

 Element is present at index 4  

 
Explanation: 

 

In the above program - 

 
o We have created a function called binary_search() function which takes two arguments - a list to 

sorted and a number to be searched. 

o We have declared two variables to store the lowest and highest values in the list. The low is assigned 

initial value to 0, high to len(list1) - 1 and mid as 0. 

o Next, we have declared the while loop with the condition that the lowest is equal and smaller than 

the highest The while loop will iterate if the number has not been found yet. 

o In the while loop, we find the mid value and compare the index value to the number we are 

searching for. 

o If the value of the mid-index is smaller than n, we increase the mid value by 1 and assign it to The 

search moves to the left side. 

o Otherwise, decrease the mid value and assign it to the high. The search moves to the right side. 

o If the n is equal to the mid value then return mid. 

o This will happen until the low is equal and smaller than the high. 

o If we reach at the end of the function, then the element is not present in the list. We return -1 to the 

calling function. 

 

 

 

 

 
Sorting - Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort. 

Bubble Sort: 

It is a simple sorting algorithm which sorts „n‟ number of elements in the list by comparing the ach pair of 

adjacent items and swaps them if they are in wrong order. 

Algorithm: 

1. Starting with the first element (index=0), compare the current element with the next element of a list. 

2. If the current element is greater (>) than the next element of the list then swap them. 

3. If the current element is less (<) than the next element of the list move to the next element. 

4. Repeat step 1 until it correct order is framed. 
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For ex: list1= [10, 15, 4, 23, 0] so here we are comparing values again 

If > --- yes ---- swap and again, so we use loops. 

If < --- No ---- Do nothing/remains same 

#Write a python program to arrange the elements in ascending order using bubble sort: 

list1=[9,16,6,26,0] 

print("unsorted list1 is", list1) 

for j in range(len(list1)-1): 

for i in range(len(list1)-1): 

if list1[i]>list1[i+1]: 

list1[i],list1[i+1]=list1[i+1],list1[i] 

print(list1) 

else: 

print(list1) 

print( ) 

print("sorted list is",list1) 

 

Output: 

unsorted list1 is [9, 16, 6, 26, 0] 

[9, 16, 6, 26, 0] 

[9, 6, 16, 26, 0] 

[9, 6, 16, 26, 0] 

[9, 6, 16, 0, 26] 

 

[6, 9, 16, 0, 26] 

[6, 9, 16, 0, 26] 

[6, 9, 0, 16, 26] 

[6, 9, 0, 16, 26] 

 

[6, 9, 0, 16, 26] 

[6, 0, 9, 16, 26] 

[6, 0, 9, 16, 26] 

[6, 0, 9, 16, 26] 

 

[0, 6, 9, 16, 26] 

[0, 6, 9, 16, 26] 

[0, 6, 9, 16, 26] 

[0, 6, 9, 16, 26] 

 

sorted list is [0, 6, 9, 16, 26] 

 
#If we want to reduce no of iterations/steps in output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/bubb.py 
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list1=[9,16,6,26,0] 

print("unsorted list1 is", list1) 

for j in range(len(list1)-1,0,-1): 

for i in range(j): 

if list1[i]>list1[i+1]: 

list1[i],list1[i+1]=list1[i+1],list1[i] 

print(list1) 

else: 
print(list1) 

print( ) 

print("sorted list is",list1) 

Output: 
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/bubb2.py 
unsorted list1 is [9, 16, 6, 26, 0] 

[9, 16, 6, 26, 0] 

[9, 6, 16, 26, 0] 
[9, 6, 16, 26, 0] 

[9, 6, 16, 0, 26] 

 

[6, 9, 16, 0, 26] 

[6, 9, 16, 0, 26] 

[6, 9, 0, 16, 26] 

 

[6, 9, 0, 16, 26] 

[6, 0, 9, 16, 26] 

 

[0, 6, 9, 16, 26] 

 

sorted list is [0, 6, 9, 16, 26] 

 
# In a different way: 

 

list1=[9,16,6,26,0] 

print("unsorted list1 is", list1) 

for j in range(len(list1)-1): 

for i in range(len(list1)-1-j): 

if list1[i]>list1[i+1]: 

list1[i],list1[i+1]=list1[i+1],list1[i] 

print(list1) 

else: 

print(list1) 

print( ) 

print("sorted list is",list1) 

 
Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/bubb3.py 
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unsorted list1 is [9, 16, 6, 26, 0] 

[9, 16, 6, 26, 0] 

[9, 6, 16, 26, 0] 

[9, 6, 16, 26, 0] 

[9, 6, 16, 0, 26] 

 

[6, 9, 16, 0, 26] 

[6, 9, 16, 0, 26] 

[6, 9, 0, 16, 26] 

 

[6, 9, 0, 16, 26] 

[6, 0, 9, 16, 26] 

 

[0, 6, 9, 16, 26] 

 

sorted list is [0, 6, 9, 16, 26] 

 
# Program to give input from the user to sort the elements 

list1=[] 

num=int(input("enter how many numbers:")) 

print("enter values") 

for k in range(num): 

list1.append(int(input())) 

print("unsorted list1 is", list1) 

for j in range(len(list1)-1): 

for i in range(len(list1)-1): 

if list1[i]>list1[i+1]: 

list1[i],list1[i+1]=list1[i+1],list1[i] 

print(list1) 

else: 

print(list1) 

print( ) 

print("sorted list is",list1) 

 
Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/bubb4.py 

 

enter how many numbers:5 

enter values 

5 
77 

4 
66 

30 

unsorted list1 is [5, 77, 4, 66, 30] 

[5, 77, 4, 66, 30] 
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[5, 4, 77, 66, 30] 

[5, 4, 66, 77, 30] 

[5, 4, 66, 30, 77] 

 

[4, 5, 66, 30, 77] 

[4, 5, 66, 30, 77] 

[4, 5, 30, 66, 77] 

[4, 5, 30, 66, 77] 

 

[4, 5, 30, 66, 77] 

[4, 5, 30, 66, 77] 

[4, 5, 30, 66, 77] 

[4, 5, 30, 66, 77] 

 

[4, 5, 30, 66, 77] 

[4, 5, 30, 66, 77] 

[4, 5, 30, 66, 77] 

[4, 5, 30, 66, 77] 

 

sorted list is [4, 5, 30, 66, 77] 

 
#bubble sort program for descending order 

 

list1=[9,16,6,26,0] 

print("unsorted list1 is", list1) 

for j in range(len(list1)-1): 

for i in range(len(list1)-1): 
if list1[i]<list1[i+1]: 

list1[i],list1[i+1]=list1[i+1],list1[i] 

print(list1) 

else: 

print(list1) 

print( ) 

print("sorted list is",list1) 

 

Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-2/pyyy/bubbdesc.py 

unsorted list1 is [9, 16, 6, 26, 0] 

[16, 9, 6, 26, 0] 
[16, 9, 6, 26, 0] 

[16, 9, 26, 6, 0] 

[16, 9, 26, 6, 0] 
 

[16, 9, 26, 6, 0] 

[16, 26, 9, 6, 0] 

[16, 26, 9, 6, 0] 

[16, 26, 9, 6, 0] 

 

[26, 16, 9, 6, 0] 
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[26, 16, 9, 6, 0] 

[26, 16, 9, 6, 0] 

[26, 16, 9, 6, 0] 

 

[26, 16, 9, 6, 0] 

[26, 16, 9, 6, 0] 

[26, 16, 9, 6, 0] 

[26, 16, 9, 6, 0] 

 

sorted list is [26, 16, 9, 6, 0] 

 
Selection Sort: 

Sort (): Built-in list method 

Sorted (): built in function 

 Generally this algorithm is called as in-place comparison based algorithm. We compare numbers and 
place them in correct position. 

 Search the list and find out the min value, this we can do it by min () method. 

 We can take min value as the first element of the list and compare with the next element until we 
find small value. 

Algorithm: 

1. Starting from the first element search for smallest/biggest element in the list of numbers. 

2. Swap min/max number with first element 

3. Take the sub-list (ignore sorted part) and repeat step 1 and 2 until all the elements are sorted. 

#Write a python program to arrange the elements in ascending order using selection sort: 

list1=[5,3,7,1,9,6] 

print(list1) 

for i in range(len(list1)): 

min_val=min(list1[i:]) 

min_ind=list1.index(min_val) 

list1[i],list1[min_ind]=list1[min_ind],list1[i] 

print(list1) 

 

Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/selectasce.py 

[5, 3, 7, 1, 9, 6] 

[1, 3, 7, 5, 9, 6] 

[1, 3, 7, 5, 9, 6] 
[1, 3, 5, 7, 9, 6] 

[1, 3, 5, 6, 9, 7] 

[1, 3, 5, 6, 7, 9] 

[1, 3, 5, 6, 7, 9] 

#Write a python program to arrange the elements in descending order using selection sort: 

list1=[5,3,7,1,9,6] 
print(list1) 

for i in range(len(list1)): 

min_val=max(list1[i:]) 

min_ind=list1.index(min_val) 
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list1[i],list1[min_ind]=list1[min_ind],list1[i] 
print(list1) 

Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/selecdecs.py 

[5, 3, 7, 1, 9, 6] 

[9, 7, 6, 5, 3, 1] 
Note: If we want the elements to be sorted in descending order use max () method in place of min (). 

 

Insertion Sort: 

 Insertion sort is not a fast sorting algorithm. It is useful only for small datasets. 

 It is a simple sorting algorithm that builds the final sorted list one item at a time. 

Algorithm: 

1. Consider the first element to be sorted & the rest to be unsorted. 

2. Take the first element in unsorted order (u1) and compare it with sorted part elements(s1) 

3. If u1<s1 then insert u1 in the correct order, else leave as it is. 

4. Take the next element in the unsorted part and compare with sorted element. 

5. Repeat step 3 and step 4 until all the elements get sorted. 
 

# Write a python program to arrange the elements in ascending order using insertion sort (with 

functions) 
def insertionsort(my_list): 
#we need to sorrt the unsorted part at a time. 

for index in range(1,len(my_list)): 

current_element=my_list[index] 
pos=index 

while current_element<my_list[pos-1]and pos>0: 
my_list[pos]=my_list[pos-1] 

pos=pos-1 
my_list[pos]=current_element 

list1=[3,5,1,0,10,2] num=int(input(“enter how many elements to be in list”)) 

insertionsort(list1) list1=[int(input()) for i in range (num)] 

print(list1) 

Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/inserti.py 

[0, 1, 2, 3, 5, 10] 

# Write a python program to arrange the elements in descending order using insertion sort (with 

functions) 

def insertionsort(my_list): 
#we need to sorrt the unsorted part at a time. 

for index in range(1,len(my_list)): 

current_element=my_list[index] 

pos=index 
while current_element>my_list[pos-1]and pos>0: 

my_list[pos]=my_list[pos-1] 

pos=pos-1 

my_list[pos]=current_element 

#list1=[3,5,1,0,10,2] 
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#insertionsort(list1) 
#print(list1) 

num=int(input("enter how many elements to be in list")) 
list1=[int(input())for i in range(num)] 
insertionsort(list1) 

print(list1) 

Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/insertdesc.py 

enter how many elements to be in list 5 

8 

1 

4 

10 

2 

[10, 8, 4, 2, 1] 

Merge Sort: 

Generally this merge sort works on the basis of divide and conquer algorithm. The three steps need to be 

followed is divide, conquer and combine. We will be dividing the unsorted list into sub list until the single 

element in a list is found. 

Algorithm: 

1. Split the unsorted list. 

2. Compare each of the elements and group them 

3. Repeat step 2 until whole list is merged and sorted. 
 

# Write a python program to arrange the elements in ascending order using Merge sort (with 

functions) 

def mergesort(list1): 
if len(list1)>1: 

mid=len(list1)//2 

left_list=list1[:mid] 

right_list=list1[mid:] 

mergesort(left_list) 

mergesort(right_list) 

i=0 

j=0 

k=0 

while i<len(left_list) and j<len(right_list): 
if left_list[i]<right_list[j]: 

list1[k]=left_list[i] 

i=i+1 

k=k+1 

else: 

list1[k]=right_list[j] 

j=j+1 

k=k+1 

while i<len(left_list): 
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list1[k]=left_list[i] 
i=i+1 

k=k+1 

while j<len(right_list): 

list1[k]=right_list[j] 

j=j+1 

k=k+1 

num=int(input("how many numbers in list1")) 

list1=[int(input()) for x in range(num)] 

mergesort(list1) 

print("sorted list1",list1) 

 

Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/merg.py 

how many numbers in list15 
5 

9 
10 

1 
66 

sorted list1 [1, 5, 9, 10, 66] 

 
Quick Sort: 

Algorithm: 

1. Select the pivot element 

2. Find out the correct position of pivot element in the list by rearranging it. 

3. Divide the list based on pivot element 

4. Sort the sub list recursively 
 

Note: Pivot element can be first, last, random elements or median of three values. 

In the following program we are going to write 3 functions. The first function is to find pivot element and its 

correct position. In second function we divide the list based on pivot element and sort the sub list and third 

function (main fun) is to print input and output. 

# Write a python program to arrange the elements in ascending order using Quick sort (with 

functions) 

#To get the correct position of pivot element: 
def pivot_place(list1,first,last): 

pivot=list1[first] 

left=first+1 

right=last 

while True: 

while left<=right and list1[left]<=pivot: 
left=left+1 

while left<=right and list1[right]>=pivot: 
right=right-1 

if right<left: 

break 

else: 

list1[left],list1[right]=list1[right],list1[left] 
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list1[first],list1[right]=list1[right],list1[first] 

return right 

#second function 

def quicksort(list1,first,last): 
if first<last: 

p=pivot_place(list1,first,last) 

quicksort(list1,first,p-1) 

quicksort(list1,p+1,last) 

#main fun 

list1=[56,25,93,15,31,44] 

n=len(list1) 

quicksort(list1,0,n-1) 

print(list1) 

 

Output: 
C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/qucksort.py 
[15, 25, 31, 44, 56, 93] 

 

# Write a python program to arrange the elements in descending order using Quick sort (with 

functions) 

#To get the correct position of pivot element: 
def pivot_place(list1,first,last): 

pivot=list1[first] 

left=first+1 

right=last 

while True: 

while left<=right and list1[left]>=pivot: 

left=left+1 

while left<=right and list1[right]<=pivot: 

right=right-1 

if right<left: 

break 

else: 
list1[left],list1[right]=list1[right],list1[left] 

list1[first],list1[right]=list1[right],list1[first] 

return right 

def quicksort(list1,first,last): 

if first<last: 

p=pivot_place(list1,first,last) 

quicksort(list1,first,p-1) 

quicksort(list1,p+1,last) 

#main fun 

list1=[56,25,93,15,31,44] 

n=len(list1) 

quicksort(list1,0,n-1) 

print(list1) 

 

Output: C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/qukdesc.py 

[93, 56, 44, 31, 25, 15] 
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UNIT – III 

Data Structures –Definition, Linear Data Structures, Non-Linear Data Structures, 
Stacks - Overview of Stack, Implementation of Stack (List), Applications of Stack 

Queues: Overview of Queue, Implementation of Queue (List), Applications of Queues, Priority 

Queues 

Linked Lists – Implementation of Singly Linked Lists, Doubly Linked Lists, Circular Linked Lists. 

Implementation of Stack and Queue using Linked list. 

 

Data Structure 
 

Organizing, managing and storing data is important as it enables easier access and efficient modifications. 

Data Structures allows you to organize your data in such a way that enables you to store collections of data, 

relate them and perform operations on them accordingly. 

 

A data structure is classified into two categories: 

 
o Linear data structure 

o Non-linear data structure 
 

Now let's have a brief look at both these data structures. 

What is the Linear data structure? 

A linear data structure is a structure in which the elements are stored sequentially, and the elements are 
connected to the previous and the next element. As the elements are stored sequentially, so they can be 

traversed or accessed in a single run. The implementation of linear data structures is easier as the elements 

are sequentially organized in memory. The data elements in an array are traversed one after another and can 

access only one element at a time. 
 

The types of linear data structures are Array, Queue, Stack, Linked List. 

 
Let's discuss each linear data structure in detail. 

 
o Array: An array consists of data elements of a same data type. For example, if we want to store the 

roll numbers of 10 students, so instead of creating 10 integer type variables, we will create an array 

having size 10. Therefore, we can say that an array saves a lot of memory and reduces the length of 

the code. 

o Stack: It is linear data structure that uses the LIFO (Last In-First Out) rule in which the data added 

last will be removed first. The addition of data element in a stack is known as a push operation, and 

the deletion of data element form the list is known as pop operation. 

o Queue: It is a data structure that uses the FIFO rule (First In-First Out). In this rule, the element 

which is added first will be removed first. There are two terms used in the queue front end 

and rear The insertion operation performed at the back end is known ad enqueue, and the deletion 

operation performed at the front end is known as dequeue. 

o Linked list: It is a collection of nodes that are made up of two parts, i.e., data element and reference 
to the next node in the sequence. 
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What is a Non-linear data structure? 

 

A non-linear data structure is also another type of data structure in which the data elements are not arranged 

in a contiguous manner. As the arrangement is nonsequential, so the data elements cannot be traversed or 

accessed in a single run. In the case of linear data structure, element is connected to two elements (previous 

and the next element), whereas, in the non-linear data structure, an element can be connected to more than 

two elements. 

 

Trees and Graphs are the types of non-linear data structure. 

 
Let's discuss both the data structures in detail. 

 
o Tree 

 

It is a non-linear data structure that consists of various linked nodes. It has a hierarchical tree structure that 

forms a parent-child relationship. The diagrammatic representation of a tree data structure is shown below: 
 
 

 

For example, the posts of employees are arranged in a tree data structure like managers, officers, clerk. In 

the above figure, A represents a manager, B and C represent the officers, and other nodes represent the 

clerks. 

 
o Graph 

A graph is a non-linear data structure that has a finite number of vertices and edges, and these edges are 

used to connect the vertices. The vertices are used to store the data elements, while the edges represent the 

relationship between the vertices. A graph is used in various real-world problems like telephone networks, 

circuit networks, social networks like LinkedIn, Facebook. In the case of facebook, a single user can be 

considered as a node, and the connection of a user with others is known as edges. 
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Stacks: 

Stack works on the principle of “Last-in, first-out”. Also, the inbuilt functions in Python make the code 

short and simple. To add an item to the top of the list, i.e., to push an item, we use append() function and to 

pop out an element we use pop() function. 

 
 

#Python code to demonstrate Implementing stack using list 

 

stack = ["Amar", "Akbar", "Anthony"] 

stack.append("Ram") 

stack.append("Iqbal") 

print(stack) 

print(stack.pop()) 

print(stack) 

print(stack.pop()) 

print(stack) 

 

Output: 

['Amar', 'Akbar', 'Anthony', 'Ram', 'Iqbal'] 

Iqbal 

['Amar', 'Akbar', 'Anthony', 'Ram'] 

Ram 

['Amar', 'Akbar', 'Anthony'] 

 
Stack Using Linked List 

A stack using a linked list is just a simple linked list with just restrictions that any element will be added and 
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IS_EMPTY(S) 

 
if S.top == null 

return TRUE 

return FALSE 

removed using push and pop respectively. In addition to that, we also keep top pointer to represent the top 

of the stack. This is described in the picture given below. 
 

 

 

 
Stack Operations: 

1. push() : Insert the element into linked list nothing but which is the top node of Stack. 
2. pop() : Return top element from the Stack and move the top pointer to the second node of linked list 

or Stack. 

3. peek(): Return the top element. 
4. display(): Print all element of Stack. 

 
A stack will be empty if the linked list won‟t have any node i.e., when the top pointer of the linked list will 

be null. So, let‟s start by making a function to check whether a stack is empty or not. 
 

Now, to push any node to the stack (S) - PUSH(S, n), we will first check if the stack is empty or not. If the 

stack is empty, we will make the new node head of the linked list and also point the top pointer to it. 
 

PUSH(S, n) 

if IS_EMPTY(S) //stack is empty 

S.head = n //new node is the head of the linked list 

S.top = n //new node is the also the top 
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PUSH(S, n) 

 
if IS_EMPTY(S) //stack is empty 

 
S.head = n //new node is the head of the linked list 

S.top = n //new node is the also the top 

else 

S.top.next = n 

S.top = n 

If the stack is not empty, we will add the new node at the last of the stack. For that, we will point next of 

the top to the new node - (S.top.next = n) and the make the new node top of the stack - (S.top = n). 

 

 

 

 

 

 

 

 

 

 

 

 

PUSH(S, n) 

if IS_EMPTY(S) //stack is empty 

... 

else 

S.top.next = n 

S.top = n 
 

Similarly, to remove a node (pop), we will first check if the stack is empty or not as we did in the 

implementation with array. 

POP(S) 

if IS_EMPTY(S) 

Error “Stack Underflow” 

In the case when the stack is not empty, we will first store the value in top node in a temporary variable 

because we need to return it after deleting the node. 

POP(S) 

if IS_EMPTY(S) 
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POP(S) 

... 

else 

x = S.top.data 

Now if the stack has only one node (top and head are same), we will just make both top and head null. 
 

POP(S) 

if IS_EMPTY(S) 

... 

else 

... 

if S.top == S.head //only one node 

S.top = NULL 

S.head = NULL 

If the stack has more than one node, we will move to the node previous to the top node and make the next of 

point it to null and also point the top to it. 
 

POP(S) 

... 

... 

if S.top == S.head //only one node 

... 

else 

tmp = S.head 

while tmp.next != S.top //iterating to the node previous to top 

tmp = tmp.next 

tmp.next = NULL //making the next of the node null 

S.top = tmp //changing the top pointer 

We first iterated to the node previous to the top node and then we marked its next to null - tmp.next = 

NULL. After this, we pointed the top pointer to it - S.top = tmp. 

At last, we will return the data stored in the temporary variable - return x. 
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Stack using linked list 
 

class Node(): 

 

def init (self, data): 
 

self.data = data 

self.next = None 

 
 

class Stack(): 

def init (self): 

if IS_EMPTY(S) 

 
Error "Stack Underflow" 

else 

x = S.top.data 

 
if S.top == S.head //only one node 

S.top = NULL 

S.head = NULL 

else 

tmp = S.head 

 
while tmp.next != S.top //iterating to the node previous to top 

tmp = tmp.next 

tmp.next = NULL //making the next of the node null 

S.top = tmp //changing the top pointer 

return x 
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self.head = None 

self.top = None 

 
 

def traversal(s): 

 

temp = s.head #temporary pointer to point to head 

 

 
 

a = '' 

 

while temp != None: #iterating over stack 

a = a+str(temp.data)+'\t' 

temp = temp.next 

 

 

print(a) 

 

 
 

def is_empty(s): 

if s.top == None: 

return True 

return False 

 
 

def push(s, n): 

 
if is_empty(s): #empty 

s.head = n 

s.top = n 

else: 

s.top.next = n 

s.top = n 
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def pop(s): 

 

if is_empty(s): 

 

print("Stack Underflow") 

return -1000 

else: 
 

x = s.top.data 

 

if s.top == s.head: # only one node 

s.top = None 

s.head = None 

else: 

temp = s.head 
 

while temp.next != s.top: #iterating to the last element 

temp = temp.next 

temp.next = None 

del s.top 

s.top = temp 

return x 

 

if name == ' main ': 
 

s = Stack() 

 

 

a = Node(10) 

b = Node(20) 

c = Node(30) 
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pop(s) 

push(s, a) 

push(s, b) 

 

push(s, c) 

 

 
 

traversal(s) 

pop(s) 

traversal(s) 

Applications of Stack 

There are many applications of a stack. Some of them are: 

 

 Stacks are used in backtracking algorithms. 

 They are also used to implement undo/redo functionality in a software. 

 Stacks are also used in syntax parsing for many compilers. 

 Stacks are also used to check proper opening and closing of parenthesis. 

 

 
Queue 

Similar to stacks, a queue is also an Abstract Data Type or ADT. A queue follows FIFO (First-in, First 

out) policy. It is equivalent to the queues in our general life. For example, a new person enters a queue at 

the last and the person who is at the front (who must have entered the queue at first) will be served first. 
 

Similar to a queue of day to day life, in Computer Science also, a new element enters a queue at the last (tail 
of the queue) and removal of an element occurs from the front (head of the queue). 
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Similar to the stack, we will implement the queue using a linked list as well as with an array. But let‟s first 
discuss the operations which are done on a queue. 

Enqueue → Enqueue is an operation which adds an element to the queue. As stated earlier, any new item 
enters at the tail of the queue, so Enqueue adds an item to the tail of a queue. 

 

Dequeue → It is similar to the pop operation of stack i.e., it returns and deletes the front element from the 

queue. 
 

isEmpty → It is used to check whether the queue has any element or not. 

isFull → It is used to check whether the queue is full or not. 

Front → It is similar to the top operation of a stack i.e., it returns the front element of the queue (but don‟t 
delete it). 

Before moving forward to code up these operations, let‟s discuss the applications of a queue. 

Applications of Queue 

 
 

Queues are used in a lot of applications, few of them are: 

 
 Queue is used to implement many algorithms like Breadth First Search (BFS), etc. 

 It can be also used by an operating system when it has to schedule jobs with equal priority 
 Customers calling a call center are kept in queues when they wait for someone to pick up the calls 

Queue Using an Array 
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We will maintain two pointers - tail and head to represent a queue. head will always point to the oldest 
element which was added and tail will point where the new element is going to be added. 

 

To insert any element, we add that element at tail and increase the tail by one to point to the next element of 
the array. 

 

Suppose tail is at the last element of the queue and there are empty blocks before head as shown in the 

picture given below. 
 

In this case, our tail will point to the first element of the array and will follow a circular order. 
 

Initially, the queue will be empty i.e., both head and tail will point to the same location i.e., at index 1. We 
can easily check if a queue is empty or not by checking if head and tail are pointing to the same location or 

not at any time. 
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IS_FULL(Q) 

 

if Q.head = Q.tail+1 

return True 

Return False 

 
Similarly, we will say that if the head of a queue is 1 more than the tail, the queue is full. 

 

 

Now, we have to deal with the enqueue and the dequeue operations. 

To enqueue any item to the queue, we will first check if the queue is full or not i.e., 

Enqueue(Q, x) 

if isFull(Q) 

Error “Queue Overflow” 

else 

… 

If the queue is not full, we will add the element to the tail i.e, Q[Q.tail] = x. 
 

IS_EMPTY(Q) 

 

If Q.tail == Q.head 

return True 

return False 
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Enqueue(Q, x) 

if isFull(Q) 

Error “Queue Overflow” 

else 

Q[Q.tail] = x 

 

if Q.tail == Q.size 

Q.tail = 1 

else 

 

Q.tail = Q.tail+1 

While adding the element, it might be possible that we have added the element at the last of the array and in 
this case, the tail will go to the first element of the array. 

 

Otherwise, we will just increase the tail by 1. 
 

To dequeue, we will first check if the queue is empty or not. If the queue is empty, then we will throw an 

error. 

Dequeue(Q, x) 
if isEmpty(Q) 

Error “Queue Underflow” 
else 

… 

To dequeue, we will first store the item which we are going to delete from the queue in a variable because 

we will be returning it at last. 

Dequeue(Q, x) 
if isEmpty(Q) 

Error “Queue Underflow” 

else 
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Dequeue(Q, x) 

if isEmpty(Q) 

Error “Queue Underflow” 

else 

x = Q[Q.head] 
 

if Q.head == Q.size 

Q.head = 1 

else 

Q.head = Q.head+1 

return x 

x = Q[Q.head] 

… 

Now, we just have to increase the head pointer by 1. And in the case when the head is at the last element of 
the array, it will go 1. 

 

 

class Queue: 

 

def init (self, size): 
 

self.head = 1 

 

self.tail = 1 

 

self.Q = [0]*(size) 

self.size = size 
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def is_empty(self): 

 

if self.tail == self.head: 

return True 

return False 

 

 

def is_full(self): 

 

if self.head == self.tail+1: 

return True 

return False 

 

 

def enqueue(self, x): 

if self.is_full(): 

print("Queue Overflow") 

else: 

self.Q[self.tail] = x 
 

if self.tail == self.size: 

self.tail = 1 

else: 
 

self.tail = self.tail+1 

 

 
 

def dequeue(self): 

if self.is_empty(): 

print("Underflow") 

else: 
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x = self.Q[self.head] 

 

if self.head == self.size: 

self.head = 1 

else: 

 

self.head = self.head+1 

return x 

 
 

def display(self): 

 

i = self.head 

while(i < self.tail): 

print(self.Q[i]) 

if(i == self.size): 

i = 0 

i = i+1 

 
 

if name == ' main ': 
 

q = Queue(10) 

q.enqueue(10) 

q.enqueue(20) 

q.enqueue(30) 

q.enqueue(40) 

q.enqueue(50) 

q.display() 

 
 

print("") 
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IS_EMPTY(Q) 

 
if Q.head == null 

return True 

return False 

q.dequeue() 

q.dequeue() 

q.display() 

 
 

print("") 

 

 
 

q.enqueue(60) 

q.enqueue(70) 

q.display() 

Queue Using Linked List 

 
As we know that a linked list is a dynamic data structure and we can change the size of it whenever it is 

needed. So, we are not going to consider that there is a maximum size of the queue and thus the queue will 

never overflow. However, one can set a maximum size to restrict the linked list from growing more than 

that size. 

As told earlier, we are going to maintain a head and a tail pointer to the queue. In the case of an empty 

queue, head will point to NULL. 

 

 

We will point the head pointer to the first element of the linked list and the tail pointer to the last element of 

it as shown in the picture given below. 
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ENQUEUE(Q, n) 

if IS_EMPTY(Q) 

Q.head = n 

Q.tail = n 

else 

Q.tail.next = n 

Q.tail = n 

 
 

The enqueue operation simply adds a new element to the last of a linked list. 
 

 

However, if the queue is empty, we will simply make the new node head and tail of the queue. 
 

 

To dequeue, we need to remove the head of the linked list. To do so, we will first store its data in a variable 

because we will return it at last and then point head to its next element. 

x = Q.head.data 

Q.head = Q.head.next 
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DEQUEUE(Q, n) 

if IS_EMPTY(Q) 

Error "Queue Underflow" 

else 

x = Q.head.data 

Q.head = Q.head.next 

return x 

return x 

We will execute the above codes when the queue is not empty. If it is, we will throw the "Queue 

Underflow" error. 
 

Queue using Linked List 

 

class Node(): 

 

def init (self, data): 
 

self.data = data 

self.next = None 

 
 

class Queue(): 

def init (self): 

self.head = None 

self.tail = None 

 
 

def traversal(q): 

 

temp = q.head #temporary pointer to point to head 
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a = '' 

 

while temp != None: #iterating over queue 

a = a+str(temp.data)+'\t' 

temp = temp.next 

 

 

print(a) 

 

 
 

def is_empty(q): 

 

if q.head == None: 

return True 

return False 

 

 

def enqueue(q, n): 

 

if is_empty(q): #empty 

q.head = n 

q.tail = n 

else: 

q.tail.next = n 

q.tail = n 

 
 

def dequeue(q): 

 

if is_empty(q): 

print("Queue Underflow") 

return -1000 

else: 
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x = q.head.data 

temp = q.head 

q.head = q.head.next 

del temp 

return x 

 

 

if name == ' main ': 
 

q = Queue() 

 

 
 

a = Node(10) 

b = Node(20) 

c = Node(30) 

 
 

dequeue(q) 

enqueue(q, a) 

enqueue(q, b) 

enqueue(q, c) 

 
 

traversal(q) 

dequeue(q) 

traversal(q) 

 

Priority Queues: A queue has FIFO (first-in-first-out) ordering where items are taken out or accessed on a 
first-come-first-served basis. Examples of queues include a queue at a movie ticket stand, as shown in the 

illustration above. But, what is a priority queue? 
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A priority queue is an abstract data structure (a data structure defined by its behaviour) that is like a normal 

queue but where each item has a special “key” to quantify its “priority”. For example, if the movie cinema 

decides to serve loyal customers first, it will order them by their loyalty (points or number of tickets 

purchased). In such a case, the queue for tickets will no longer be first-come-first-served, but most-loyal- 

first-served. The customers will be the “items” of this priority queue while the “priority” or “key” will be 

their loyalty. 

 

A priority queue can be of two types: 

 

1. Max Priority Queue: Which arranges the data as per descending order of their priority. 

2. Min Priority Queue: Which arranges the data as per ascending order of their priority. 

 

In a priority queue, following factors come into play: 

 

1. In priority queue, data when inserted, is stored based on its priority. 

2. When we remove a data from a priority queue(min), the data at the top, which will be the data with 

least priority, will get removed. 

3. But, this way priority queue will not be following the basic priniciple of a queue, First in First 

Out(FIFO). Yes, it won't! Because a priority queue is an advanced queue used when we have to 

arrange and manipulate data as per the given priority. 

Implementing Priority Queue 

So now we will design our very own minimum priority queue using python list and object oriented concept. 

Below are the algorithm steps: 
 

 

1. Node: The Node class will be the element inserted in the priority queue. You can modify 

the Node class as per your requirements. 

2. insert: To add a new data element(Node) in the priority queue. 

o If the priority queue is empty, we will insert the element to it. 
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o If the priority queue is not empty, we will traverse the queue, comparing the priorities of the 

existing nodes with the new node, and we will add the new node before the node with 

priority greater than the new node. 

o If the new node has the highest priority, then we will add the new node at the end. 

3. delete: To remove the element with least priority. 

4. size: To check the size of the priority queue, in other words count the number of elements in the 

queue and return it. 

5. show: To print all the priority queue elements. 

 

Priority Queue Program 

 

# class for Node with data and priority 

class Node: 

def init (self, info, priority): 
 

self.info = info 

self.priority = priority 

 
 

# class for Priority queue 

class PriorityQueue: 

 
 

def init (self): 
 

self.queue = list() 

 

# if you want you can set a maximum size for the queue 

 

 

def insert(self, node): 

# if queue is empty 

if self.size() == 0: 
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# add the new node 

self.queue.append(node) 

else: 

# traverse the queue to find the right place for new node 

for x in range(0, self.size()): 

# if the priority of new node is greater 
 

if node.priority >= self.queue[x].priority: 

 

# if we have traversed the complete queue 

if x == (self.size()-1): 

# add new node at the end 

self.queue.insert(x+1, node) 

else: 

continue 

else: 

self.queue.insert(x, node) 

return True 

 
 

def delete(self): 

 

# remove the first node from the queue 

return self.queue.pop(0) 

 
 

def show(self): 

 

for x in self.queue: 

 

print str(x.info)+" - "+str(x.priority) 
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def size(self): 

 

return len(self.queue) 

 

 
 

pQueue = PriorityQueue() 

node1 = Node("C", 3) 

node2 = Node("B", 2) 

node3 = Node("A", 1) 

node4 = Node("Z", 26) 

node5 = Node("Y", 25) 

node6 = Node("L", 12) 

 

pQueue.insert(node1) 

pQueue.insert(node2) 

pQueue.insert(node3) 

pQueue.insert(node4) 

pQueue.insert(node5) 

pQueue.insert(node6) 

pQueue.show() 

print(" ------- ") 

pQueue.delete()pQueue.show() 

 

 
 

Linked Lists: 

 

Linked lists are one of the most commonly used data structures in any programming language.Linked Lists, 

on the other hand, are different. Linked lists, do not store data at contiguous memory locations. For each 

item in the memory location, linked list stores value of the item and the reference or pointer to the next item. 

One pair of the linked list item and the reference to next item constitutes a node. 
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The following are different types of linked lists. 

 

 Single Linked List 

A single linked list is the simplest of all the variants of linked lists. Every node in a single linked list 
contains an item and reference to the next item and that's it. 

 

 Doubly Linked List 

 Circular Linked List 

 Linked List with Header 

 

 
# Python program to create a linked list and display its elements. 

The program creates a linked list using data items input from the user and displays it. 

Solution: 

1. Create a class Node with instance variables data and next. 

2. Create a class Linked List with instance variables head and last_node. 

3. The variable head points to the first element in the linked list while last_node points to the last. 

4. Define methods append and display inside the class Linked List to append data and display the linked list 

respectively. 

5. Create an instance of Linked List, append data to it and display the list. 

Program: 

 

class Node: 

def init (self, data): 

self.data= data 

self.next=None 

 
class LinkedList: 

def   init   (self): 
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Program Explanation 

1. An instance of Linked List is created. 

2. The user is asked for the number of elements they would like to add. This is stored in n. 

3. Using a loop, data from the user is appended to the linked list n times. 

4. The linked list is displayed. 

Output: 

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/link1.py 

How many elements would you like to add? 5 

Enter data item: 4 

Enter data item: 4 

Enter data item: 6 

Enter data item: 8 

Enter data item: 9 

The linked list: 4 4 6 8 9 

self.head=None 

self.last_node=None 

 
def append(self, data): 

ifself.last_nodeisNone: 

self.head= Node(data) 

self.last_node=self.head 

else: 

self.last_node.next= Node(data) 

self.last_node=self.last_node.next 

 
def display(self): 

current =self.head 

while current isnotNone: 

print(current.data, end =' ') 

current = current.next 

 
a_llist = LinkedList() 

n =int(input('How many elements would you like to add? ')) 

for i inrange(n): 

data =int(input('Enter data item: ')) 

a_llist.append(data) 

print('The linked list: ', end ='') 

a_llist.display() 
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Doubly Linked List 

 
A doubly linked list is a linked data structure that consists of a set of sequentially linked records called 
nodes. 

 

Each node contains three fields: two link fields (references to the previous and to the next node in the 

sequence of nodes) and one data field. 

 
Advantages of Doubly Linked List 

 

1. Traversal can be done on either side means both in forward as well as backward. 

 

2. Deletion Operation is more efficient if the pointer to delete node is given. 

 

Disadvantages of Linked List 
 

1. Since it requires extra pointer that is the previous pointer to store previous node reference. 

 

2. After each operation like insertion-deletion, it requires an extra pointer that is a previous pointer which 

needs to be maintained. 

 

 
 

So, a typical node in the doubly linked list consists of three fields: 

 
o Data represents the data value stored in the node. 

o Previous represents a pointer that points to the previous node. 

o Next represents a pointer that points to the next node in the list. 
 

The above picture represents a doubly linked list in which each node has two pointers to point to previous 

and next node respectively. Here, node 1 represents the head of the list. The previous pointer of the head 

node will always point to NULL. Next pointer of node one will point to node 2. Node 5 represents the tail of 

the list whose previous pointer will point to node 4, and the next will point to NULL. 

 
ALGORITHM: 

1. Define a Node class which represents a node in the list. It will have three properties: data, previous 

which will point to the previous node and next which will point to the next node. 
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2. Define another class for creating a doubly linked list, and it has two nodes: head and tail. Initially, 

head and tail will point to null. 

3. addNode() will add node to the list: 

 
o It first checks whether the head is null, then it will insert the node as the head. 

o Both head and tail will point to a newly added node. 

o Head's previous pointer will point to null and tail's next pointer will point to null. 

o If the head is not null, the new node will be inserted at the end of the list such that new node's 

previous pointer will point to tail. 

o The new node will become the new tail. Tail's next pointer will point to null. 
 

a. display() will show all the nodes present in the list. 

 
o Define a new node 'current' that will point to the head. 

o Print current.data till current points to null. 

o Current will point to the next node in the list in each iteration. 
 
 

PROGRAM: 

1. #Represent a node of doubly linked list 

2. class Node: 

3. def init (self,data): 

4. self.data = data; 

5. self.previous = None; 

6. self.next = None; 

7. 

8. class DoublyLinkedList: 

9. #Represent the head and tail of the doubly linked list 

10. def init (self): 

11. self.head = None; 

12. self.tail = None; 

13. 

14. #addNode() will add a node to the list 
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15. def addNode(self, data): 

16. #Create a new node 

17. newNode = Node(data); 

18. 

19. #If list is empty 

20. if(self.head == None): 

21. #Both head and tail will point to newNode 

22. self.head = self.tail = newNode; 

23. #head's previous will point to None 

24. self.head.previous = None; 

25. #tail's next will point to None, as it is the last node of the list 

26. self.tail.next = None; 

27. else: 

28. #newNode will be added after tail such that tail's next will point to newNode 

29. self.tail.next = newNode; 

30. #newNode's previous will point to tail 

31. newNode.previous = self.tail; 

32. #newNode will become new tail 

33. self.tail = newNode; 

34. #As it is last node, tail's next will point to None 

35. self.tail.next = None; 

36. 

37. #display() will print out the nodes of the list 

38. def display(self): 

39. #Node current will point to head 

40. current = self.head; 

41. if(self.head == None): 

42. print("List is empty"); 

43. return; 

44. print("Nodes of doubly linked list: "); 

45. while(current != None): 

46. #Prints each node by incrementing pointer. 

47. print(current.data),; 
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Nodes of doubly linked list: 

1 2 3 4 5 

48. current = current.next; 

49. 

50. dList = DoublyLinkedList(); 

51. #Add nodes to the list 

52. dList.addNode(1); 

53. dList.addNode(2); 

54. dList.addNode(3); 

55. dList.addNode(4); 

56. dList.addNode(5); 

57. 

58. #Displays the nodes present in the list 

59. dList.display(); 

 
Output: 

 

Circular Linked List 

 

The circular linked list is a kind of linked list. First thing first, the node is an element of the list, and it has 

two parts that are, data and next. Data represents the data stored in the node, and next is the pointer that will 

point to the next node. Head will point to the first element of the list, and tail will point to the last element in 

the list. In the simple linked list, all the nodes will point to their next element and tail will point to null. 

 

The circular linked list is the collection of nodes in which tail node also point back to head node. The 

diagram shown below depicts a circular linked list. Node A represents head and node D represents tail. So, 

in this list, A is pointing to B, B is pointing to C and C is pointing to D but what makes it circular is that 

node D is pointing back to node A. 
 

 

 

 

 



77  

ALGORITHM: 

1. Define a Node class which represents a node in the list. It has two properties data and next which 

will point to the next node. 

2. Define another class for creating the circular linked list, and it has two nodes: head and tail. It has 

two methods: add() and display() . 

3. add() will add the node to the list: 

 
o It first checks whether the head is null, then it will insert the node as the head. 

o Both head and tail will point to the newly added node. 

o If the head is not null, the new node will be the new tail, and the new tail will point to the head as it 

is a circular linked list. 

a. display() will show all the nodes present in the list. 

 
o Define a new node 'current' that will point to the head. 

o Print current.data till current will points to head 

o Current will point to the next node in the list in each iteration. 
 
 

PROGRAM: 

1. #Represents the node of list. 

2. class Node: 

3. def init (self,data): 

4. self.data = data; 

5. self.next = None; 

6. 

7. class CreateList: 

8. #Declaring head and tail pointer as null. 

9. def init (self): 

10. self.head = Node(None); 

11. self.tail = Node(None); 

12. self.head.next = self.tail; 

13. self.tail.next = self.head; 

14. 
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15. #This function will add the new node at the end of the list. 

16. def add(self,data): 

17. newNode = Node(data); 

18. #Checks if the list is empty. 

19. if self.head.data is None: 

20. #If list is empty, both head and tail would point to new node. 

21. self.head = newNode; 

22. self.tail = newNode; 

23. newNode.next = self.head; 

24. else: 

25. #tail will point to new node. 

26. self.tail.next = newNode; 

27. #New node will become new tail. 

28. self.tail = newNode; 

29. #Since, it is circular linked list tail will point to head. 

30. self.tail.next = self.head; 

31. 

32. #Displays all the nodes in the list 

33. def display(self): 

34. current = self.head; 

35. if self.head is None: 

36. print("List is empty"); 

37. return; 

38. else: 

39. print("Nodes of the circular linked list: "); 

40. #Prints each node by incrementing pointer. 

41. print(current.data), 

42. while(current.next != self.head): 

43. current = current.next; 

44. print(current.data), 

45. 

46. 

48. class CircularLinkedList: 
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Nodes of the circular linked list: 

1 2 3 4 

49. cl = CreateList(); 

50. #Adds data to the list 

51. cl.add(1); 

52. cl.add(2); 

53. cl.add(3); 

54. cl.add(4); 

55. #Displays all the nodes present in the list 

56. cl.display(); 

 
Output: 
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UNIT – IV 

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and 

searching. 

Graphs - Introduction, Directed vs Undirected Graphs, Weighted vs Unweighted Graphs, 

Representations, Breadth First Search, Depth First Search. 

 

Dictionaries: 

 

 

 

Graphs – Introduction: 
 

A graph is an advanced data structure that is used to organize items in an interconnected network. Each 

item in a graph is known as a node(or vertex) and these nodes are connected by edges. 

 

In the figure below, we have a simple graph where there are five nodes in total and six edges. 
 
 

The nodes in any graph can be referred to as entities and the edges that connect different nodes define 

the relationships between these entities. In the above graph we have a set of nodes {V} = {A, B, C, D, 

E} and a set of edges, {E} = {A-B, A-D, B-C, B-D, C-D, D-E} respectively 

 
Types of Graphs 

 
Let's cover various different types of graphs. 

 
1. Null Graphs 

 
A graph is said to be null if there are no edges in that graph. 

A pictorial representation of the null graph is given below: 
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2. Undirected Graphs 

 
If we take a look at the pictorial representation that we had in the Real-world example above, we can clearly 

see that different nodes are connected by a link (i.e. edge) and that edge doesn't have any kind of direction 

associated with it. For example, the edge between "Anuj" and "Deepak" is bi-directional and hence the 

relationship between them is two ways, which turns out to be that "Anuj" knows "Deepak" and "Deepak" 

also knows about "Anuj". These types of graphs where the relation is bi-directional or there is not a single 

direction, are known as Undirected graphs. 

 

A pictorial representation of another undirected graph is given below: 

 

 
3. Directed Graphs 

 
What if the relation between the two people is something like, "Shreya" know "Abhishek" but "Abhishek" 

doesn't know "Shreya". This type of relationship is one-way, and it does include a direction. The edges with 

arrows basically denote the direction of the relationship and such graphs are known as directed graphs. 

 

A pictorial representation of the graph is given below: 

 

It can also be noted that the edge from "Shreya" to "Abhishek" is an outgoing edge for "Shreya" and an 
incoming edge for "Abhishek". 

 
4. Cyclic Graph 

 
A graph that contains at least one node that traverses back to itself is known as a cyclic graph. In simple 

words, a graph should have at least one cycle formation for it to be called a cyclic graph. 

 

A pictorial representation of a cyclic graph is given below: 
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It can be easily seen that there exists a cycle between the nodes (a, b, c) and hence it is a cyclic graph. 

 
5. Acyclic Graph 

 

A graph where there's no way we can start from one node and can traverse back to the same one, or simply 
doesn't have a single cycle is known as an acyclic graph. 

 

A pictorial representation of an acyclic graph is given below: 

 

 
6. Weighted Graph 

 
When the edge in a graph has some weight associated with it, we call that graph as a weighted graph. The 

weight is generally a number that could mean anything, totally dependent on the relationship between the 

nodes of that graph. 

 

A pictorial representation of the weighted graph is given below: 
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It can also be noted that if any graph doesn't have any weight associated with it, we simply call it an 
unweighted graph. 

 
7. Connected Graph 

 
A graph where we have a path between every two nodes of the graph is known as a connected graph. A path 

here means that we are able to traverse from a node "A" to say any node "B". In simple terms, we can say 

that if we start from one node of the graph we will always be able to traverse to all the other nodes of the 

graph from that node, hence the connectivity. 

 

A pictorial representation of the connected graph is given below: 

 

 
8. Disconnected Graph 

 

A graph that is not connected is simply known as a disconnected graph. In a disconnected graph, we will not 
be able to find a path from between every two nodes of the graph. 

 

A pictorial representation of the disconnected graph is given below: 

 

 
9. Complete Graph 

 
A graph is said to be a complete graph if there exists an edge for every pair of vertices(nodes) of that graph. 

A pictorial representation of the complete graph is given below: 
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10. Multigraph 

 
A graph is said to be a multigraph if there exist two or more than two edges between any pair of nodes in the 
graph. 

 

A pictorial representation of the multigraph is given below: 

 

 
Commonly Used Graph Terminologies 

 
 Path - A sequence of alternating nodes and edges such that each of the successive nodes are 

connected by the edge.

 Cycle - A path where the starting and the ending node is the same.

 Simple Path - A path where we do not encounter a vertex again.

 Bridge - An edge whose removal will simply make the graph disconnected.

 Forest - A forest is a graph without cycles.

 Tree - A connected graph that doesn't have any cycles.

 Degree - The degree in a graph is the number of edges that are incident on a particular node.

 Neighbour - We say vertex "A" and "B" are neighbours if there exists an edge between them.

 

 
Weighted vs UnWeighted Graph 

 

To understand difference between weighted vs unweighted graph, first we need to understand 
what weight represent ? 

 
A weight is a numerical value attached to each individual edge in the graph. 

 
Weighted Graph will contains weight on each edge where as unweighted does not. 

Following is an example, where both graphs looks exactly the same but one is weighted another is not. 
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What difference does it make ? 

 
Let‟s take the same example to find shortest path from A to F. Result is different, just because one is 

weighted another doesn‟t. 
 

 
 

But how? 

 
Because when you doesn‟t have weight, all edges are considered equal. Shortest distance means less number 
of nodes you travel. 

 
But in case of weighted graph, calculation happens on the sum of weights of the travelled edges. 

 
 

Breadth First Search: 
 

BFS is an algorithm that is used to graph data or searching tree or traversing structures. The algorithm 

efficiently visits and marks all the key nodes in a graph in an accurate breadthwise fashion. 

 

This algorithm selects a single node (initial or source point) in a graph and then visits all the nodes adjacent 

to the selected node. Once the algorithm visits and marks the starting node, then it moves towards the 

nearest unvisited nodes and analyses them. 

 
Once visited, all nodes are marked. These iterations continue until all the nodes of the graph have been 

successfully visited and marked. The full form of BFS is the Breadth-first search. 

 

Steps in Breadth First Search 
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1. Start by putting any one of the graph‟s vertices at the back of a queue. 

2. Take the front item of the queue and add it to the visited list. 

3. Create a list of that vertex‟s adjacent nodes. Add the ones which aren‟t in the visited list to the back 

of the queue. 

4. Keep repeating steps 2 and 3 until the queue is empty. 

 
Example of BFS 

 

In the following example of DFS, we have used graph having 6 vertices. 

Example of BFS 

Step 1) 
 

 
 

5. 

You have a graph of seven numbers ranging from 0 – 6. 
 

Step 2) 
 
 

6. 
0 or zero has been marked as a root node. 
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Step 3) 

 

7. 
0 is visited, marked, and inserted into the queue data structure. 

 

Step 4) 

 

 

 

 

 

 

 

 

 

 

 

 
8. 

Remaining 0 adjacent and unvisited nodes are visited, marked, and inserted into the queue. 

 
Step 5) 

 

 

 

 

 

 

 

 

 

 

 
9. 

Traversing iterations are repeated until all nodes are visited. 
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Depth First Search. 

 

DFS is an algorithm for finding or traversing graphs or trees in depth-ward direction. The execution of the 

algorithm begins at the root node and explores each branch before backtracking. It uses a stack data 

structure to remember, to get the subsequent vertex, and to start a search, whenever a dead-end appears in 

any iteration. The full form of DFS is Depth-first search. 

Steps in Depth First Search 

1. Start by putting any one of the graph‟s vertices on top of a stack. 

2. Take the top item of the stack and add it to the visited list. 

3. Create a list of that vertex‟s adjacent nodes. Add the ones which aren‟t in the visited list to the top of 

the stack. 

4. Keep repeating steps 2 and 3 until the stack is empty. 

 
Example of DFS 

 

In the following example of DFS, we have used an undirected graph having 5 vertices. 
 

 
 

 
Step 1) 

 

 
 

 
We have started from vertex 0. The algorithm begins by putting it in the visited list and simultaneously 
putting all its adjacent vertices in the data structure called stack. 
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Step 2) 
 

 

You will visit the element, which is at the top of the stack, for example, 1 and go to its adjacent nodes. It is 

because 0 has already been visited. Therefore, we visit vertex 2. 

 
Step 3) 

 

 

 
Vertex 2 has an unvisited nearby vertex in 4. Therefore, we add that in the stack and visit it. 

 

Step 4) 
 

 
 

 
Finally, we will visit the last vertex 3, it doesn't have any unvisited adjoining nodes. We have completed the 
traversal of the graph using DFS algorithm. 
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UNIT -V 
 

Trees - Overview of Trees, Tree Terminology, Binary Trees: Introduction, Applications, Implementation. 

Tree Traversals, Binary Search Trees: Introduction, Implementation, AVL Trees: Introduction, Rotations, 

Implementation, Implementation B-Trees and B+ Trees 

 
Tree Data Structures 

Trees are non-linear data structures that represent nodes connected by edges. Each tree consists of a root 

node as the Parent node, and the left node and right node as Child nodes. 

 Root → The topmost node of the hierarchy is called the root of the tree.

 Child → Nodes next in the hierarchy are the children of the previous node.

 Parent → The node just previous to the current node is the parent of the current node.

 Siblings → Nodes with the same parent are called siblings.
 Ancestors → Nodes which are higher in the hierarchy are ancestors of a given node.

 Descendents → Nodes which are lower in the hierarchy are descendants of a given node.

 Internal Nodes → Nodes with at least one child are internal nodes.

 External Nodes/Leaves → Nodes which don't have any child are called leaves of a tree.

 Edge → The link between two nodes is called an edge.
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 Level → The root of a tree is at level 0 and the nodes whose parent is root are at level 1 and so on.

 Height → The height of a node is the number of nodes (excluding the node) on the longest path 

from the node to a leaf.

 

 Height of Tree → Height of a tree is the height of its root.

 Depth → The depth of a node is the number of nodes (excluding the node) on the path from the root 

to the node.

 
 Node Degree → It is the maximum number of children a node has.
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 Tree Degree → Tree degree is the maximum of the node degrees. So, the tree degree in the above 
picture is 3.

 

Till now, we have an idea of what a tree is and the terminologies we use with a tree. But we don't know yet 

what the specific properties of a tree are or which structure should qualify as a tree. So, let's see the 

properties of a tree. 

 
Properties of a Tree 

 

 

 
A tree must have some properties so that we can differentiate from other data structures. So, let's look at the 

properties of a tree. 

The numbers of nodes in a tree must be a finite and nonempty set. 

There must exist a path to every node of a tree i.e., every node must be connected to some other node. 

There must not be any cycles in the tree. It means that the number of edges is one less than the number of 

nodes. 
 

 

 

 
Binary Trees 

A binary tree is a tree in which every node has at most two children. 
 

As you can see in the picture given above, a node can have less than 2 children but not more than that. 
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We can also classify a binary tree into different categories. Let's have a look at them: 

 
Full Binary Tree → A binary tree in which every node has 2 children except the leaves is known as a full 

binary tree. 

 

Complete Binary Tree → A binary tree which is completely filled with a possible exception at the bottom 

level i.e., the last level may not be completely filled and the bottom level is filled from left to right. 

 

Let's look at this picture to understand the difference between a full and a complete binary tree. 
 

A complete binary tree also holds some important properties. So, let's look at them. 
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 The parent of node i is ⌊i2⌋⌊i2⌋. For example, the parent of node 4 is 2 and the parent of node 5 is 

also 2.

 The left child of node i is 2i2i.

 The right child of node i is 2i+12i+1

 

 

 

 

 

 
 

Perfect Binary Tree → In a perfect binary tree, each leaf is at the same level and all the interior nodes have 

two children. 

 

Thus, a perfect binary tree will have the maximum number of nodes for all alternative binary trees of the 

same height and it will be 2h+1−12h+1−1 which we are going to prove next. 

 
Maximum Number of Nodes in a Binary Tree 

 

 

 
 

We know that the maximum number of nodes will be in a perfect binary tree. So, let's assume that the height 

of a perfect binary tree is hh. 
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Number of nodes at level 0 = 20=120=1 

Number of nodes at level 1 = 21=221=2 

Similarly, the number of nodes at level h = 2h2h 

Thus, the total number of nodes in the tree = 20+21+...+2h20+21+...+2h 

The above sequence is a G.P. with common ratio 2 and first term 1 and total number of terms are h+1. So, 

the value of the summation will be 2h+1−12−1=2h+1−12h+1−12−1=2h+1−1. 

Thus, the total number of nodes in a perfect binary tree = 2h+1−12h+1−1. 

 
Height of a Perfect Binary Tree 

 

 

 
 

We know that the number of nodes (n) for height (h) of a perfect binary tree = 2h+1−12h+1−1. 

=>n=2∗2h−1=>n=2∗2h−1 

or,2h=n+12or,2h=n+12 

h=lgn+12h=lgn+12 

Thus, the height of a perfect binary tree with n nodes = lgn+12lgn+12. 

We know that the number of nodes at level i in a perfect binary tree = 2i2i. Thus, the number of 

leaves (nodes at level h) = 2h2h. 

Thus, the total number of non-leaf nodes = 2h+1−1−2h=2h−12h+1−1−2h=2h−1 i.e., number of leaf nodes 

- 1. 

Thus, the maximum number of nodes will be in a perfect binary tree and the minimum number of nodes will 

be in a tree in which nodes are linked just like a linked list. 



97 
 

 
 

 

Array Representation of Binary Tree 

 

 

 
 

In the previous chapter, we have already seen to make a node of a tree. We can easily use those nodes to 

make a linked representation of a binary tree. For now, let's discuss the array representation of a binary tree. 

We start by numbering the nodes of the tree from 1 to n(number of nodes). 
 

As you can see, we have numbered from top to bottom and left to right for the same level. Now, these 

numbers represent the indices of an array (starting from 1) as shown in the picture given below. 
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We can also get the parent, the right child and the left child using the properties of a complete binary tree we 

have discussed above i.e., for a node i, the parent is ⌊i2⌋⌊i2⌋, the left child is 2i2i and the right child 

is 2i+12i+1. 

 

 
So, we represented a complete binary tree using an array and saw how to get the parent and children of any 

node. Let's discuss about doing the same for an incomplete binary tree. 

 
Array Representation of Incomplete Binary Tree 

 

 

 
 

To represent an incomplete binary tree with an array, we first assume that all the nodes are present to make 

it a complete binary tree and then number the nodes as shown in the picture given below. 

 

Now according to these numbering, we fill up the array. 
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RIGHT_CHILD(index) 

 
if (T[index] != null and (2*index + 1) <= T.size) 

return (2*index + 1) 

else 

 
return null 

LEFT_CHILD(index) 

 
if (T[index] != null and (2*index) <= T.size) 

return (2*index) 

else 

 
return null 

 
 
 

Coding a Binary Tree 

 

For the linked representation, we can easily access the parent, right child and the left child 

with T.parent, T.right and T.left respectively. 

So, we will first write explain the codes for the array representation and then write the full codes in C, Java 

and Python for both array and linked representation. 

Let's start by writing the code to get the right child of a node. We will pass the index and the tree to the 

function - RIGHT_CHILD(index). 

After this, we will check if there is a node at the index or not (if (T[index] != null)) and also if the index of 

the right child (2∗index+12∗index+1) lies in the size of the tree or not i.e., if (T[index] != null and (2*index 

+ 1) <= T.size). 

If the above condition is true, we will return the index of the right child i.e., return (2*index + 1). 

 

Similarly, we can get the left child. 

 



100 
 

PARENT(index) 

 
if (T[index] != null and (floor(index/2)) =! null) 

return floor(index/2) 

else 

 
return null 

''' 

D 

/ \ 

/ \ 

/ 

A 

/ \ 

\ 

F 

/ \ 

/ \ 

B R 

/ 

E 

/ \ 

\ 

T 

/ / \ 

G Q 

''' 

V J L 

complete_node=15 

Similarly, we can also write the code to get the parent. 

 

 

 

 

 

 

 

 
Code Using Array 
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tree=[None,'D','A','F','E','B','R','T','G','Q',None,None,'V',None,'J','L'] 
 

 
defget_right_child(index): 

# node is not null 

# and the result must lie within the number of nodes for a complete binary tree 

iftree[index]!=Noneand((2*index)+1)<=complete_node: 

return(2*index)+1 

# right child doesn't exist 

return-1 
 

 
defget_left_child(index): 

# node is not null 

# and the result must lie within the number of nodes for a complete binary tree 

iftree[index]!=Noneand(2*index)<=complete_node: 

return2*index 

# left child doesn't exist 

return-1 
 

 
defget_parent(index): 

iftree[index]!=Noneandindex/2!=None: 

returnindex//2 

return-1 

 
Linked List Representation of Binary Tree 

We use a double linked list to represent a binary tree. In a double linked list, every node consists of three 

fields. First field for storing left child address, second for storing actual data and third for storing right child 

address. 

In this linked list representation, a node has the following structure... 
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Code Using Linked Representation 

classTreeNode: 

def init (self,data): 

self.data=data 

self.right=None 

self.left=None 

self.parent=None 

classTree: 

def init (self,n): 

self.root=n 

if name =='  main ': 

''' 

D 

/ \ 

/ \ 

/ 

A 

\ 

F 



103 
 

 

 
 
 
 
 
 
 

 
''' 

/ \ / \ 

/ \ / \ 

E B R T 

/ \ / / \ 

G Q V J L 

 

 
d=TreeNode('D') 

a=TreeNode('A') 

f=TreeNode('F') 

e=TreeNode('E') 

b=TreeNode('B') 

r=TreeNode('R') 

t1=TreeNode('T') 

g=TreeNode('G') 

q=TreeNode('Q') 

v=TreeNode('V') 

j=TreeNode('J') 

l=TreeNode('L') 

 
t=Tree(d) 

 

 
t.root.right=f 

t.root.left=a 

 

''' 
 

 
D 

/ \ 

/ \ 
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Applications of Binary tree 

 
Binary trees are used to represent a nonlinear data structure. There are various forms of Binary 

trees. Binary trees play a vital role in a software application. One of the most important applications of the 

Binary tree is in the searching algorithm. 

A general tree is defined as a nonempty finite set T of elements called nodes such that: 
 

 The tree contains the root element 

 The remaining elements of the tree form an ordered collection of zeros and more disjoint trees T1, T2, T3, 
T4 …. Tn which are called subtrees. 

 
Binary Tree Traversal 

We are ready with a binary tree. Our next task would be to visit each node of it i.e., to traverse over the 

entire tree. In a linear data structure like linked list, it was a simple task, we just had to visit the next pointer 

of the node. But since a tree is a non-linear data structure, we follow different approaches. Generally, there 

are three types of traversals: 

 

 Preorder Traversal 

/ 

A 

\ 

F 

''' 

a.right=b 

a.left=e 

f.right=t1 

f.left=r 

e.right=q 

e.left=g 

r.left=v 

t1.right=l 

t1.left=j 
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PREORDER(n) 

 
if(n != null) 

 
print(n.data) // visiting root 

PREORDER(n.left) // visiting left subtree 

PREORDER(n.right) // visiting right subtree 

 Postorder Traversal 

 Inorder Traversal 

 

Basically, each of these traversals gives us a sequence in which we should visit the nodes. For example, in 

preorder traversal we first visit the root, then the left subtree and then the right subtree. Each traversal is 

useful in solving some specific problems. So, we choose the method of traversal accroding to the need of the 

problem we are going to solve. Let's discuss each of them one by one. 

 
Preorder Traversal 

 

 

 
In preorder traversal, we first visit the root of a tree, then its left subtree and after visiting the left subtree, 

the right subtree. 
 

So, we are first checking if the node is null or not - if(n != null). 

After this, we are visiting the root i.e., printing its data - print(n.data). 

Then we are visiting the left subtree - PREORDER(n.left). 

At last, we are visiting the right subtree - PREORDER(n.right). 

So, we will first visit the root as shown in the picture given below. 
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Then, we will visit the left subtree. 
 

In this left subtree, again we will visit its root and then its left subtree. 
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At last, we will visit the right subtree. 
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POSTORDER(n) 

 
if(n != null) 

 
PREORDER(n.left) // visiting left subtree 

PREORDER(n.right) // visiting right subtree 

print(n.data) // visiting root 

 
 

 

 

 

 

 

 

 

 

 

Postorder Traversal 

 

 

 
In postorder traversal, we first visit the left subtree, then the right subtree and at last, the root. 

 

We will first visit the left subtree. 
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When there is no left subtree, we will visit the right subtree. 
 

Since the right subtree is null, we will visit the root. 
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INORDER(n) 

 
if(n != null) 

INORDER(n.left) 

print(n.data) 

 
 

Similarly, we will visit every other node. 
 

 
Inorder Traversal 

 

 

 
In inorder traversal, we first visit the left subtree, then the root and lastly, the right subtree. 
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We can also see the inorder traversal as projection of the tree on an array as shown in the picture given 

below. 
 

INORDER(n.right) 
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Binary Search Tree 

 

In a binary tree, every node can have a maximum of two children but there is no need to maintain the order 

of nodes basing on their values. In a binary tree, the elements are arranged in the order they arrive at the tree 

from top to bottom and left to right. 

 

A binary tree has the following time complexities... 

 

1. Search Operation - O(n) 

2. Insertion Operation - O(1) 

3. Deletion Operation - O(n) 

 

To enhance the performance of binary tree, we use a special type of binary tree known as Binary Search 

Tree. Binary search tree mainly focuses on the search operation in a binary tree. Binary search tree can be 

defined as follows... 

 

 
In a binary search tree, all the nodes in the left subtree of any node contains smaller values and all the nodes 

in the right subtree of any node contains larger values as shown in the following figure... 

 

Binary Search Tree is a binary tree in which every node contains only smaller values in its left subtree 

and only larger values in its right subtree. 
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Example 

 
The following tree is a Binary Search Tree. In this tree, left subtree of every node contains nodes with 

smaller values and right subtree of every node contains larger values. 

 

 

 

 
 

 

Every binary search tree is a binary tree but every binary tree need not to be binary search tree. 
 

 

 

 

Operations on a Binary Search Tree 

 

The following operations are performed on a binary search tree... 

 

1. Search 

2. Insertion 

3. Deletion 

 
Search Operation in BST 

 

In a binary search tree, the search operation is performed with O(log n) time complexity. The search 

operation is performed as follows... 
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 Step 1 - Read the search element from the user. 

 Step 2 - Compare the search element with the value of root node in the tree. 

 Step 3 - If both are matched, then display "Given node is found!!!" and terminate the function 

 Step 4 - If both are not matched, then check whether search element is smaller or larger than that 

node value. 

 Step 5 - If search element is smaller, then continue the search process in left subtree. 

 Step 6- If search element is larger, then continue the search process in right subtree. 

 Step 7 - Repeat the same until we find the exact element or until the search element is compared 

with the leaf node 

 Step 8 - If we reach to the node having the value equal to the search value then display "Element is 

found" and terminate the function. 

 Step 9 - If we reach to the leaf node and if it is also not matched with the search element, then 

display "Element is not found" and terminate the function. 

Insertion Operation in BST 

 

In a binary search tree, the insertion operation is performed with O(log n) time complexity. In binary search 

tree, new node is always inserted as a leaf node. The insertion operation is performed as follows... 

 

 Step 1 - Create a newNode with given value and set its left and right to NULL. 

 Step 2 - Check whether tree is Empty. 

 Step 3 - If the tree is Empty, then set root to newNode. 

 Step 4 - If the tree is Not Empty, then check whether the value of newNode 

is smaller or larger than the node (here it is root node). 

 Step 5 - If newNode is smaller than or equal to the node then move to its left child. If newNode 

is larger than the node then move to its right child. 

 Step 6- Repeat the above steps until we reach to the leaf node (i.e., reaches to NULL). 

 Step 7 - After reaching the leaf node, insert the newNode as left child if the newNode is smaller or 

equal to that leaf node or else insert it as right child. 

Deletion Operation in BST 
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In a binary search tree, the deletion operation is performed with O(log n) time complexity. Deleting a node 

from Binary search tree includes following three cases... 

 
 Case 1: Deleting a Leaf node (A node with no children) 

 Case 2: Deleting a node with one child 

 Case 3: Deleting a node with two children 

 
Case 1: Deleting a leaf node 

 

We use the following steps to delete a leaf node from BST... 

 

 Step 1 - Find the node to be deleted using search operation 

 Step 2 - Delete the node using free function (If it is a leaf) and terminate the function. 

 
Case 2: Deleting a node with one child 

 

We use the following steps to delete a node with one child from BST... 

 

 Step 1 - Find the node to be deleted using search operation 

 Step 2 - If it has only one child then create a link between its parent node and child node. 

 Step 3 - Delete the node using free function and terminate the function. 

 
Case 3: Deleting a node with two children 

 

We use the following steps to delete a node with two children from BST... 

 

 Step 1 - Find the node to be deleted using search operation 

 Step 2 - If it has two children, then find the largest node in its left subtree (OR) the smallest node 

in its right subtree. 

 Step 3 - Swap both deleting node and node which is found in the above step. 

 Step 4 - Then check whether deleting node came to case 1 or case 2 or else goto step 2 

 Step 5 - If it comes to case 1, then delete using case 1 logic. 

 Step 6- If it comes to case 2, then delete using case 2 logic. 

 Step 7 - Repeat the same process until the node is deleted from the tree. 
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classNode: 

def init (self,data): 

Example 

 
Construct a Binary Search Tree by inserting the following sequence of numbers... 

10,12,5,4,20,8,7,15 and 13 

 
Above elements are inserted into a Binary Search Tree as follows... 
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self.data=data 

self.right=None 

self.left=None 

self.parent=None 

 

classBinarySearchTree: 

def init (self): 

self.root=None 

 

defminimum(self,x): 

whilex.left!=None: 

x=x.left 

returnx 
 

 
definsert(self,n): 

y=None 

temp=self.root 

whiletemp!=None: 

y=temp 

ifn.data<temp.data: 

temp=temp.left 

else: 

temp=temp.right 

 

n.parent=y 
 

 
ify==None:#newly added node is root 

self.root=n 

elifn.data<y.data: 

y.left=n 
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else: 

y.right=n 
 

 
deftransplant(self,u,v): 

ifu.parent==None: 

self.root=v 

elifu==u.parent.left: 

u.parent.left=v 

else: 

u.parent.right=v 
 

 
ifv!=None: 

v.parent=u.parent 
 

 
defdelete(self,z): 

ifz.left==None: 

self.transplant(z,z.right) 

 

elifz.right==None: 

self.transplant(z,z.left) 

 

else: 

y=self.minimum(z.right)#minimum element in right subtree 

ify.parent!=z: 

self.transplant(y,y.right) 

y.right=z.right 

y.right.parent=y 

 

self.transplant(z,y) 

y.left=z.left 
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y.left.parent=y 
 

 
definorder(self,n): 

ifn!=None: 

self.inorder(n.left) 

print(n.data) 

self.inorder(n.right) 

 

if name ==' main ': 

t=BinarySearchTree() 

 

a=Node(10) 

b=Node(20) 

c=Node(30) 

d=Node(100) 

e=Node(90) 

f=Node(40) 

g=Node(50) 

h=Node(60) 

i=Node(70) 

j=Node(80) 

k=Node(150) 

l=Node(110) 

m=Node(120) 

 

t.insert(a) 

t.insert(b) 

t.insert(c) 

t.insert(d) 

t.insert(e) 
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An AVL tree is a balanced binary search tree. In an AVL tree, balance factor of every node is either - 

1, 0 or +1. 

 
 

AVL Tree  

 

AVL tree is a height-balanced binary search tree. That means, an AVL tree is also a binary search tree but it 

is a balanced tree. A binary tree is said to be balanced if, the difference between the heights of left and right 

subtrees of every node in the tree is either -1, 0 or +1. In other words, a binary tree is said to be balanced if 

the height of left and right children of every node differ by either -1, 0 or +1. In an AVL tree, every node 

maintains an extra information known as balance factor. The AVL tree was introduced in the year 1962 by 

G.M. Adelson-Velsky and E.M. Landis. 

 
An AVL tree is defined as follows... 

 

Balance factor of a node is the difference between the heights of the left and right subtrees of that node. The 

balance factor of a node is calculated either height of left subtree - height of right subtree (OR) height of 

right subtree - height of left subtree. In the following explanation, we calculate as follows... 

t.insert(f) 

t.insert(g) 

t.insert(h) 

t.insert(i) 

t.insert(j) 

t.insert(k) 

t.insert(l) 

t.insert(m) 

 

t.delete(a) 

t.delete(m) 

 

t.inorder(t.root) 
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Example of AVL Tree 

 

 

 

 

The above tree is a binary search tree and every node is satisfying balance factor condition. So this tree is 

said to be an AVL tree. 

 

 

 

Every AVL Tree is a binary search tree but every Binary Search Tree need not be AVL tree. 
 

 

 

 

AVL Tree Rotations 

 

In AVL tree, after performing operations like insertion and deletion we need to check the balance factor of 

every node in the tree. If every node satisfies the balance factor condition then we conclude the operation 

otherwise we must make it balanced. Whenever the tree becomes imbalanced due to any operation we 

use rotation operations to make the tree balanced. 

Balance factor = heightOfLeftSubtree - heightOfRightSubtree 
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Rotation is the process of moving nodes either to left or to right to make the tree balanced. 

Rotation operations are used to make the tree balanced. 
 

There are four rotations and they are classified into two types. 
 
 

 

 
Single Left Rotation (LL Rotation) 

 

In LL Rotation, every node moves one position to left from the current position. To understand LL Rotation, 

let us consider the following insertion operation in AVL Tree... 
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Single Right Rotation (RR Rotation) 

 

In RR Rotation, every node moves one position to right from the current position. To understand RR 

Rotation, let us consider the following insertion operation in AVL Tree... 

 

 

 
Left Right Rotation (LR Rotation) 

 

The LR Rotation is a sequence of single left rotation followed by a single right rotation. In LR Rotation, at 

first, every node moves one position to the left and one position to right from the current position. To 

understand LR Rotation, let us consider the following insertion operation in AVL Tree... 
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Right Left Rotation (RL Rotation) 

 

The RL Rotation is sequence of single right rotation followed by single left rotation. In RL Rotation, at first 

every node moves one position to right and one position to left from the current position. To understand RL 

Rotation, let us consider the following insertion operation in AVL Tree... 

 

 

 

 

Operations on an AVL Tree 

 

The following operations are performed on AVL tree... 

 

1. Search 

2. Insertion 

3. Deletion 

 
Search Operation in AVL Tree 

 

In an AVL tree, the search operation is performed with O(log n) time complexity. The search operation in 

the AVL tree is similar to the search operation in a Binary search tree. We use the following steps to search 

an element in AVL tree... 

 

 Step 1 - Read the search element from the user. 

 Step 2 - Compare the search element with the value of root node in the tree. 

 Step 3 - If both are matched, then display "Given node is found!!!" and terminate the function 
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 Step 4 - If both are not matched, then check whether search element is smaller or larger than that 

node value. 

 Step 5 - If search element is smaller, then continue the search process in left subtree. 

 Step 6 - If search element is larger, then continue the search process in right subtree. 

 Step 7 - Repeat the same until we find the exact element or until the search element is compared 

with the leaf node. 

 Step 8 - If we reach to the node having the value equal to the search value, then display "Element is 

found" and terminate the function. 

 Step 9 - If we reach to the leaf node and if it is also not matched with the search element, then 

display "Element is not found" and terminate the function. 

 

 

Insertion Operation in AVL Tree 

 

In an AVL tree, the insertion operation is performed with O(log n) time complexity. In AVL Tree, a new 

node is always inserted as a leaf node. The insertion operation is performed as follows... 

 

 Step 1 - Insert the new element into the tree using Binary Search Tree insertion logic. 

 Step 2 - After insertion, check the Balance Factor of every node. 

 Step 3 - If the Balance Factor of every node is 0 or 1 or -1 then go for next operation. 

 Step 4 - If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is said to be 

imbalanced. In this case, perform suitable Rotation to make it balanced and go for next operation. 

Example: Construct an AVL Tree by inserting numbers from 1 to 8. 
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Deletion Operation in AVL Tree 

 

The deletion operation in AVL Tree is similar to deletion operation in BST. But after every deletion 

operation, we need to check with the Balance Factor condition. If the tree is balanced after deletion go for 

next operation otherwise perform suitable rotation to make the tree Balanced. 

B-tree 
B-tree is a special type of self-balancing search tree in which each node can contain more than one key and 

can have more than two children. It is a generalized form of the binary search tree. 

It is also known as a height-balanced m-way tree. 

 

 

 

 

 

 

 

 

 

 

B-tree 

 

Why do you need a B-tree data structure? 

The need for B-tree arose with the rise in the need for lesser time in accessing physical storage media like a 

hard disk. The secondary storage devices are slower with a larger capacity. There was a need for such types 

of data structures that minimize the disk access. 

Other data structures such as a binary search tree, avl tree, red-black tree, etc can store only one key in one 

node. If you have to store a large number of keys, then the height of such trees becomes very large, and the 

access time increases. 

However, B-tree can store many keys in a single node and can have multiple child nodes. This decreases the 

height significantly allowing faster disk accesses. 

 

B-tree Properties 

 
1. For each node x, the keys are stored in increasing order. 

2. In each node, there is a boolean value x.leaf which is true if x is a leaf. 

3. If n is the order of the tree, each internal node can contain at most n - 1 keys along with a pointer to each child. 

https://www.programiz.com/dsa/binary-search-tree
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4. Each node except root can have at most n children and at least n/2 children. 

5. All leaves have the same depth (i.e. height-h of the tree). 

6. The root has at least 2 children and contains a minimum of 1 key. 

7. If n ≥ 1, then for any n-key B-tree of height h and minimum degree t ≥ 2, h ≥ logt (n+1)/2. 

 

Operations on a B-tree 

Searching an element in a B-tree 

 
Searching for an element in a B-tree is the generalized form of searching an element in a Binary Search 

Tree. The following steps are followed. 

 
1. Starting from the root node, compare k with the first key of the node. 

If k = the first key of the node, return the node and the index. 

2. If k.leaf = true, return NULL (i.e. not found). 

3. If k < the first key of the root node, search the left child of this key recursively. 

4. If there is more than one key in the current node and k > the first key, compare k with the next key in the node. 

If k < next key, search the left child of this key (ie. k lies in between the first and the second keys). 

Else, search the right child of the key. 
5. Repeat steps 1 to 4 until the leaf is reached. 

 

Searching Example 

 
 
 
 
 
 
 
 
 

 
1. Let us search key k = 17 in the tree below of degree 3. 

B-tree 
2. k is not found in the root so, compare it with the root key. 

 

 

 

 

 

 

 

 

 

 
 

k is not found on the root node 



 

 

3. Since k > 11, go to the right child of the root node. 
Go to the right subtree 

4. Compare k with 16. Since k > 16, compare k with the next key 18. 

 

Compare with the keys from left to right 

5. Since k < 18, k lies between 16 and 18. Search in the right child of 16 or the left child of 18. 
 

k lies in between 16 and 18 

 

 

 

 

 

 

 

 

 

 

6. k is found. 
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k is found 



 

Algorithm for Searching an Element 
BtreeSearch(x, k) 

i = 1 

while i ≤ n[x] and k ≥ keyi[x] // n[x] means number of keys in x node 

do i = i + 1 

if i n[x] and k = keyi[x] 

then return (x, i) 

if leaf [x] 

then return NIL 

else 

return BtreeSearch(ci[x], k) 

Insertion into a B-tree 

Inserting an element on a B-tree consists of two events: searching the appropriate node to insert the 

element and splitting the node if required.Insertion operation always takes place in the bottom-up 

approach. 

Let us understand these events below. 

 

 
Insertion Operation 

 
1. If the tree is empty, allocate a root node and insert the key. 

2. Update the allowed number of keys in the node. 

3. Search the appropriate node for insertion. 

4. If the node is full, follow the steps below. 

5. Insert the elements in increasing order. 

6. Now, there are elements greater than its limit. So, split at the median. 

7. Push the median key upwards and make the left keys as a left child and the right keys as a right child. 

8. If the node is not full, follow the steps below. 

9. Insert the node in increasing order. 

 
 

Insertion Example 

Let us understand the insertion operation with the illustrations below. 

The elements to be inserted are 8, 9, 10, 11, 15, 20, 17. 
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131 Inserting elements 
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into a B-tree 

 

Algorithm for Inserting an Element 
BreeInsertion(T, k) 

r root[T] 

if n[r] = 2t - 1 

s = AllocateNode() 

root[T] = s 

leaf[s] = FALSE 

n[s] <- 0 

c1[s] <- r 

BtreeSplitChild(s, 1, r) 

BtreeInsertNonFull(s, k) 

else BtreeInsertNonFull(r, k) 

BtreeInsertNonFull(x, k) 

i = n[x] 

if leaf[x] 

while i ≥ 1 and k < keyi[x] 

keyi+1 [x] = keyi[x] 

i = i - 1 

keyi+1[x] = k 

n[x] = n[x] + 1 

else while i ≥ 1 and k < keyi[x] 

i = i - 1 

i = i + 1 

if n[ci[x]] == 2t - 1 

BtreeSplitChild(x, i, ci[x]) 

if k &rt; keyi[x] 

i = i + 1 

BtreeInsertNonFull(ci[x], k) 

BtreeSplitChild(x, i) 

BtreeSplitChild(x, i, y) 

z = AllocateNode() 

leaf[z] = leaf[y] 

n[z] = t - 1 

for j = 1 to t - 1 

keyj[z] = keyj+t[y] 

if not leaf [y] 

for j = 1 to t 

cj[z] = cj + t[y] 

n[y] = t - 1 

for j = n[x] + 1 to i + 1 

cj+1[x] = cj[x] 

ci+1[x] = z 

for j = n[x] to i 

keyj+1[x] = keyj[x] 

keyi[x] = keyt[y] 

n[x] = n[x] + 1 

Deletion from a B-tree 

Deleting an element on a B-tree consists of three main events: searching the node where the key to be 

deleted exists, deleting the key and balancing the tree if required. 

While deleting a tree, a condition called underflow may occur. Underflow occurs when a node contains less 

than the minimum number of keys it should hold. 

The terms to be understood before studying deletion operation are: 
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1. Inorder Predecessor 

The largest key on the left child of a node is called its inorder predecessor. 

2. Inorder Successor 

The smallest key on the right child of a node is called its inorder successor. 

 
 

Deletion Operation 

 

Before going through the steps below, one must know these facts about a B tree of degree m. 

 
1. A node can have a maximum of m children. (i.e. 3) 

2. A node can contain a maximum of m - 1 keys. (i.e. 2) 

3. A node should have a minimum of ⌈m/2⌉ children. (i.e. 2) 

4. A node (except root node) should contain a minimum of ⌈m/2⌉ - 1 keys. (i.e. 1) 

 

There are three main cases for deletion operation in a B tree. 

 

Case I 
 
The key to be deleted lies in the leaf. There are two cases for it. 

 
1. The deletion of the key does not violate the property of the minimum number of keys a node should hold. 

 

In the tree below, deleting 32 does not violate the above properties. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Deleting a leaf key 

(32) from B-tree 
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2. The deletion of the key violates the property of the minimum number of keys a node should hold. In this case, we 

borrow a key from its immediate neighboring sibling node in the order of left to right. 

 

First, visit the immediate left sibling. If the left sibling node has more than a minimum number of keys, then borrow a 

key from this node. 

 

Else, check to borrow from the immediate right sibling node. 

 

In the tree below, deleting 31 results in the above condition. Let us borrow a key from the left sibling node. 

 

Deleting a leaf key 
(31) If both the immediate sibling nodes already have a minimum number of keys, then merge the node with either the 

left sibling node or the right sibling node. This merging is done through the parent node. 
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Deleting 30 results in the above case. 

 

Delete a leaf key 

(30) 
 

Case II 
 

If the key to be deleted lies in the internal node, the following cases occur. 
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1. The internal node, which is deleted, is replaced by an inorder predecessor if the left child has more than the minimum 

 

number of keys. 
Deleting an internal node (33) 

2. The internal node, which is deleted, is replaced by an inorder successor if the right child has more than the minimum 

number of keys. 
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3. If either child has exactly a minimum number of keys then, merge the left and the right children. 

 

Deleting an 

internal node (30) After merging if the parent node has less than the minimum number of keys then, look for the 

siblings as in Case I. 

Case III 
 
In this case, the height of the tree shrinks. If the target key lies in an internal node, and the deletion of the key leads 

to a fewer number of keys in the node (i.e. less than the minimum required), then look for the inorder predecessor 

and the inorder successor. If both the children contain a minimum number of keys then, borrowing cannot take place. 

This leads to Case II(3) i.e. merging the children. 
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Again, look for the sibling to borrow a key. But, if the sibling also has only a minimum number of keys then, merge 

the node with the sibling along with the parent. Arrange the children accordingly (increasing order). 
 

 
 

Deleting an internal node 

(10) 
 
# Deleting a key on a B-tree in Python 

 
 

# Btree node 

class BTreeNode: 

def init (self, leaf=False): 

self.leaf = leaf 

self.keys = [] 

self.child = [] 

 
 

class BTree: 

def init (self, t): 

self.root = BTreeNode(True) 

self.t = t 

 

# Insert a key 

def insert(self, k): 

root = self.root 

if len(root.keys) == (2 * self.t) - 1: 

temp = BTreeNode() 

self.root = temp 

temp.child.insert(0, root) 

self.split_child(temp, 0) 
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self.insert_non_full(temp, k) 

else: 

self.insert_non_full(root, k) 

 

# Insert non full 

def insert_non_full(self, x, k): 

i = len(x.keys) - 1 

if x.leaf: 

x.keys.append((None, None)) 

while i >= 0 and k[0] < x.keys[i][0]: 

x.keys[i + 1] = x.keys[i] 

i -= 1 

x.keys[i + 1] = k 

else: 

while i >= 0 and k[0] < x.keys[i][0]: 

i -= 1 

i += 1 

if len(x.child[i].keys) == (2 * self.t) - 1: 

self.split_child(x, i) 

if k[0] > x.keys[i][0]: 

i += 1 

self.insert_non_full(x.child[i], k) 

 

# Split the child 

def split_child(self, x, i): 

t = self.t 

y = x.child[i] 

z = BTreeNode(y.leaf) 

x.child.insert(i + 1, z) 

x.keys.insert(i, y.keys[t - 1]) 

z.keys = y.keys[t: (2 * t) - 1] 

y.keys = y.keys[0: t - 1] 

if not y.leaf: 

z.child = y.child[t: 2 * t] 

y.child = y.child[0: t - 1] 

 

# Delete a node 

def delete(self, x, k): 

t = self.t 

i = 0 

while i < len(x.keys) and k[0] > x.keys[i][0]: 

i += 1 

if x.leaf: 

if i < len(x.keys) and x.keys[i][0] == k[0]: 

x.keys.pop(i) 

return 

return 

 

if i < len(x.keys) and x.keys[i][0] == k[0]: 

return self.delete_internal_node(x, k, i) 

elif len(x.child[i].keys) >= t: 

self.delete(x.child[i], k) 

else: 

if i != 0 and i + 2 < len(x.child): 

if len(x.child[i - 1].keys) >= t: 

self.delete_sibling(x, i, i - 1) 

elif len(x.child[i + 1].keys) >= t: 

self.delete_sibling(x, i, i + 1) 

else: 

self.delete_merge(x, i, i + 1) 

elif i == 0: 
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if len(x.child[i + 1].keys) >= t: 

self.delete_sibling(x, i, i + 1) 

else: 

self.delete_merge(x, i, i + 1) 

elif i + 1 == len(x.child): 

if len(x.child[i - 1].keys) >= t: 

self.delete_sibling(x, i, i - 1) 

else: 

self.delete_merge(x, i, i - 1) 

self.delete(x.child[i], k) 

 

# Delete internal node 

def delete_internal_node(self, x, k, i): 

t = self.t 

if x.leaf: 

if x.keys[i][0] == k[0]: 

x.keys.pop(i) 

return 

return 

 

if len(x.child[i].keys) >= t: 

x.keys[i] = self.delete_predecessor(x.child[i]) 

return 

elif len(x.child[i + 1].keys) >= t: 

x.keys[i] = self.delete_successor(x.child[i + 1]) 

return 

else: 

self.delete_merge(x, i, i + 1) 

self.delete_internal_node(x.child[i], k, self.t - 1) 

 

# Delete the predecessor 

def delete_predecessor(self, x): 

if x.leaf: 

return x.pop() 

n = len(x.keys) - 1 

if len(x.child[n].keys) >= self.t: 

self.delete_sibling(x, n + 1, n) 

else: 

self.delete_merge(x, n, n + 1) 

self.delete_predecessor(x.child[n]) 

 

# Delete the successor 

def delete_successor(self, x): 

if x.leaf: 

return x.keys.pop(0) 

if len(x.child[1].keys) >= self.t: 

self.delete_sibling(x, 0, 1) 

else: 

self.delete_merge(x, 0, 1) 

self.delete_successor(x.child[0]) 

 

# Delete resolution 

def delete_merge(self, x, i, j): 

cnode = x.child[i] 

 

if j > i: 

rsnode = x.child[j] 

cnode.keys.append(x.keys[i]) 

for k in range(len(rsnode.keys)): 

cnode.keys.append(rsnode.keys[k]) 

if len(rsnode.child) > 0: 
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cnode.child.append(rsnode.child[k]) 

if len(rsnode.child) > 0: 

cnode.child.append(rsnode.child.pop()) 

new = cnode 

x.keys.pop(i) 

x.child.pop(j) 

else: 

lsnode = x.child[j] 

lsnode.keys.append(x.keys[j]) 

for i in range(len(cnode.keys)): 

lsnode.keys.append(cnode.keys[i]) 

if len(lsnode.child) > 0: 

lsnode.child.append(cnode.child[i]) 

if len(lsnode.child) > 0: 

lsnode.child.append(cnode.child.pop()) 

new = lsnode 

x.keys.pop(j) 

x.child.pop(i) 

 

if x == self.root and len(x.keys) == 0: 

self.root = new 

 

# Delete the sibling 

def delete_sibling(self, x, i, j): 

cnode = x.child[i] 

if i < j: 

rsnode = x.child[j] 

cnode.keys.append(x.keys[i]) 

x.keys[i] = rsnode.keys[0] 

if len(rsnode.child) > 0: 

cnode.child.append(rsnode.child[0]) 

rsnode.child.pop(0) 

rsnode.keys.pop(0) 

else: 

lsnode = x.child[j] 

cnode.keys.insert(0, x.keys[i - 1]) 

x.keys[i - 1] = lsnode.keys.pop() 

if len(lsnode.child) > 0: 

cnode.child.insert(0, lsnode.child.pop()) 

 

# Print the tree 

def print_tree(self, x, l=0): 

print("Level ", l, " ", len(x.keys), end=":") 

for i in x.keys: 

print(i, end=" ") 

print() 

l += 1 

if len(x.child) > 0: 

for i in x.child: 

self.print_tree(i, l) 

 

 

B = BTree(3) 

 

for i in range(10): 

B.insert((i, 2 * i)) 

B.print_tree(B.root) 

B.delete(B.root, (8,)) 
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print("\n") 

B.print_tree(B.root) 

B+ Tree 

A B+ tree is an advanced form of a self-balancing tree in which all the values are present in the leaf level. 

 

An important concept to be understood before learning B+ tree is multilevel indexing. In multilevel indexing, the 

index of indices is created as in figure below. It makes accessing the data easier and faster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Multilevel Indexing using B+ tree 

 

Properties of a B+ Tree 

 
1. All leaves are at the same level. 

2. The root has at least two children. 
3. Each node except root can have a maximum of m children and at least m/2 children. 

4. Each node can contain a maximum of m - 1 keys and a minimum of ⌈m/2⌉ - 1 keys. 

 
 

Comparison between a B-tree and a B+ Tree 
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B-tree 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
B+ tree 

 

The data pointers are present only at the leaf nodes on a B+ tree whereas the data pointers are present in the internal, 

leaf or root nodes on a B-tree. 

 

The leaves are not connected with each other on a B-tree whereas they are connected on a B+ tree. 

Operations on a B+ tree are faster than on a B-tree. 

 

Searching on a B+ Tree 

 

The following steps are followed to search for data in a B+ Tree of order m. Let the data to be searched be k. 

 
1. Start from the root node. Compare k with the keys at the root node [k1, k2, k3,. ..... km - 1]. 

2. If k < k1, go to the left child of the root node. 

3. Else if k == k1, compare k2. If k < k2, k lies between k1 and k2. So, search in the left child of k2. 
4. If k > k2, go for k3, k4,...km-1 as in steps 2 and 3. 
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5. Repeat the above steps until a leaf node is reached. 

6. If k exists in the leaf node, return true else return false. 

 
 

Searching Example on a B+ Tree 

 

Let us search k = 45 on the following B+ tree. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

B+ tree 

 

 

 

 

 

 

 

 

 

 

 
 

1. Compare k with the root node. k is 

not found at the root 

 

 

 

 

 

 

 

 

 

 

 
2. Since k > 25, go to the right child. 

Go to right of the root 
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3. Compare k with 35. Since k > 30, compare k with 45. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
4. Since k ≥ 45, so go to the right child. 

k not found 

 

 

 

 

 

 

 

 

 

 

 
 

go to the right 
 

 

 

 

 

 

 

 

 

 

 

 
 

5. k is found. k is found 

 

 
# B+ tee in python 

import math 

# Node creation 

class Node: 

def init (self, order): 

self.order = order 

self.values = [] 

self.keys = [] 

self.nextKey = None 

self.parent = None 

self.check_leaf = False 
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# Insert at the leaf 

def insert_at_leaf(self, leaf, value, key): 

if (self.values): 

temp1 = self.values 

for i in range(len(temp1)): 

if (value == temp1[i]): 

self.keys[i].append(key) 

break 

elif (value < temp1[i]): 

self.values = self.values[:i] + [value] + self.values[i:] 

self.keys = self.keys[:i] + [[key]] + self.keys[i:] 

break 

elif (i + 1 == len(temp1)): 

self.values.append(value) 

self.keys.append([key]) 

break 

else: 

self.values = [value] 

self.keys = [[key]] 

 

# B plus tree 

class BplusTree: 

def init (self, order): 

self.root = Node(order) 

self.root.check_leaf = True 

 

# Insert operation 

def insert(self, value, key): 

value = str(value) 

old_node = self.search(value) 

old_node.insert_at_leaf(old_node, value, key) 

 

if (len(old_node.values) == old_node.order): 

node1 = Node(old_node.order) 

node1.check_leaf = True 

node1.parent = old_node.parent 

mid = int(math.ceil(old_node.order / 2)) - 1 

node1.values = old_node.values[mid + 1:] 

node1.keys = old_node.keys[mid + 1:] 

node1.nextKey = old_node.nextKey 

old_node.values = old_node.values[:mid + 1] 

old_node.keys = old_node.keys[:mid + 1] 

old_node.nextKey = node1 

self.insert_in_parent(old_node, node1.values[0], node1) 

 

# Search operation for different operations 

def search(self, value): 

current_node = self.root 

while(current_node.check_leaf == False): 

temp2 = current_node.values 

for i in range(len(temp2)): 

if (value == temp2[i]): 

current_node = current_node.keys[i + 1] 

break 

elif (value < temp2[i]): 

current_node = current_node.keys[i] 

break 

elif (i + 1 == len(current_node.values)): 

current_node = current_node.keys[i + 1] 
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break 

return current_node 

 

# Find the node 

def find(self, value, key): 

l = self.search(value) 

for i, item in enumerate(l.values): 

if item == value: 

if key in l.keys[i]: 

return True 

else: 

return False 

return False 

 

# Inserting at the parent 

def insert_in_parent(self, n, value, ndash): 

if (self.root == n): 

rootNode = Node(n.order) 

rootNode.values = [value] 

rootNode.keys = [n, ndash] 

self.root = rootNode 

n.parent = rootNode 

ndash.parent = rootNode 

return 

 

parentNode = n.parent 

temp3 = parentNode.keys 

for i in range(len(temp3)): 

if (temp3[i] == n): 

parentNode.values = parentNode.values[:i] + \ 

[value] + parentNode.values[i:] 

parentNode.keys = parentNode.keys[:i + 

1] + [ndash] + parentNode.keys[i + 1:] 

if (len(parentNode.keys) > parentNode.order): 

parentdash = Node(parentNode.order) 

parentdash.parent = parentNode.parent 

mid = int(math.ceil(parentNode.order / 2)) - 1 

parentdash.values = parentNode.values[mid + 1:] 

parentdash.keys = parentNode.keys[mid + 1:] 

value_ = parentNode.values[mid] 

if (mid == 0): 

parentNode.values = parentNode.values[:mid + 1] 

else: 

parentNode.values = parentNode.values[:mid] 

parentNode.keys = parentNode.keys[:mid + 1] 

for j in parentNode.keys: 

j.parent = parentNode 

for j in parentdash.keys: 

j.parent = parentdash 

self.insert_in_parent(parentNode, value_, parentdash) 

 

# Delete a node 

def delete(self, value, key): 

node_ = self.search(value) 

 

temp = 0 

for i, item in enumerate(node_.values): 

if item == value: 

temp = 1 

 

if key in node_.keys[i]: 
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if len(node_.keys[i]) > 1: 

node_.keys[i].pop(node_.keys[i].index(key)) 

elif node_ == self.root: 

node_.values.pop(i) 

node_.keys.pop(i) 

else: 

node_.keys[i].pop(node_.keys[i].index(key)) 

del node_.keys[i] 

node_.values.pop(node_.values.index(value)) 

self.deleteEntry(node_, value, key) 

else: 

print("Value not in Key") 

return 

if temp == 0: 

print("Value not in Tree") 

return 

 

# Delete an entry 

def deleteEntry(self, node_, value, key): 

 

if not node_.check_leaf: 

for i, item in enumerate(node_.keys): 

if item == key: 

node_.keys.pop(i) 

break 

for i, item in enumerate(node_.values): 

if item == value: 

node_.values.pop(i) 

break 

 

if self.root == node_ and len(node_.keys) == 1: 

self.root = node_.keys[0] 

node_.keys[0].parent = None 

del node_ 

return 

elif (len(node_.keys) < int(math.ceil(node_.order / 2)) and node_.check_leaf == 

False) or (len(node_.values) < int(math.ceil((node_.order - 1) / 2)) and node_.check_leaf == 

True): 
 

is_predecessor = 0 

parentNode = node_.parent 

PrevNode = -1 

NextNode = -1 

PrevK = -1 

PostK = -1 

for i, item in enumerate(parentNode.keys): 

 

if item == node_: 

if i > 0: 

PrevNode = parentNode.keys[i - 1] 

PrevK = parentNode.values[i - 1] 

 

if i < len(parentNode.keys) - 1: 

NextNode = parentNode.keys[i + 1] 

PostK = parentNode.values[i] 

 

if PrevNode == -1: 

ndash = NextNode 

value_ = PostK 

elif NextNode == -1: 

is_predecessor = 1 
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ndash = PrevNode 

value_ = PrevK 

else: 

if len(node_.values) + len(NextNode.values) < node_.order: 

ndash = NextNode 

value_ = PostK 

else: 

is_predecessor = 1 

ndash = PrevNode 

value_ = PrevK 

 

if len(node_.values) + len(ndash.values) < node_.order: 

if is_predecessor == 0: 

node_, ndash = ndash, node_ 

ndash.keys += node_.keys 

if not node_.check_leaf: 

ndash.values.append(value_) 

else: 

ndash.nextKey = node_.nextKey 

ndash.values += node_.values 

 

if not ndash.check_leaf: 

for j in ndash.keys: 

j.parent = ndash 

 

self.deleteEntry(node_.parent, value_, node_) 

del node_ 

else: 

if is_predecessor == 1: 

if not node_.check_leaf: 

ndashpm = ndash.keys.pop(-1) 

ndashkm_1 = ndash.values.pop(-1) 

node_.keys = [ndashpm] + node_.keys 

node_.values = [value_] + node_.values 

parentNode = node_.parent 

for i, item in enumerate(parentNode.values): 

if item == value_: 

p.values[i] = ndashkm_1 

break 

else: 

ndashpm = ndash.keys.pop(-1) 

ndashkm = ndash.values.pop(-1) 

node_.keys = [ndashpm] + node_.keys 

node_.values = [ndashkm] + node_.values 

parentNode = node_.parent 

for i, item in enumerate(p.values): 

if item == value_: 

parentNode.values[i] = ndashkm 

break 

else: 

if not node_.check_leaf: 

ndashp0 = ndash.keys.pop(0) 

ndashk0 = ndash.values.pop(0) 

node_.keys = node_.keys + [ndashp0] 

node_.values = node_.values + [value_] 

parentNode = node_.parent 

for i, item in enumerate(parentNode.values): 

if item == value_: 

parentNode.values[i] = ndashk0 

break 

else: 
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ndashp0 = ndash.keys.pop(0) 

ndashk0 = ndash.values.pop(0) 

node_.keys = node_.keys + [ndashp0] 

node_.values = node_.values + [ndashk0] 

parentNode = node_.parent 

for i, item in enumerate(parentNode.values): 

if item == value_: 

parentNode.values[i] = ndash.values[0] 

break 

 

if not ndash.check_leaf: 

for j in ndash.keys: 

j.parent = ndash 

if not node_.check_leaf: 

for j in node_.keys: 

j.parent = node_ 

if not parentNode.check_leaf: 

for j in parentNode.keys: 

j.parent = parentNode 

 

 

# Print the tree 

def printTree(tree): 

lst = [tree.root] 

level = [0] 

leaf = None 

flag = 0 

lev_leaf = 0 

node1 = Node(str(level[0]) + str(tree.root.values)) 

while (len(lst) != 0): 

x = lst.pop(0) 

lev = level.pop(0) 

if (x.check_leaf == False): 

for i, item in enumerate(x.keys): 

print(item.values) 

else: 

for i, item in enumerate(x.keys): 

print(item.values) 

if (flag == 0): 

lev_leaf = lev 

leaf = x 

flag = 1 

 

 

record_len = 3 

bplustree = BplusTree(record_len) 

bplustree.insert('5', '33') 

bplustree.insert('15', '21') 

bplustree.insert('25', '31') 

bplustree.insert('35', '41') 

bplustree.insert('45', '10') 

printTree(bplustree) 

if(bplustree.find('5', '34')): 

print("Found") 

else: 

print("Not found") 


